The name of this superfamily has been modified since the most recent official CATH+ release (v4_4_0). At the point of the last release, this superfamily was named:
"Palm domain of DNA polymerase
".
FunFam 8: DNA polymerase
Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.
There are 6 GO terms relating to "molecular function"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
|
1 | O48653 (/IDA) |
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
|
1 | O48653 (/IEP) |
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
|
1 | O48653 (/ISS) |
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
|
1 | Q9FHA3 (/TAS) |
DNA primase activity GO:0003896
Catalysis of the synthesis of a short RNA primer on a DNA template, providing a free 3'-OH that can be extended by DNA-directed DNA polymerases.
|
1 | O48653 (/IDA) |
DNA primase activity GO:0003896
Catalysis of the synthesis of a short RNA primer on a DNA template, providing a free 3'-OH that can be extended by DNA-directed DNA polymerases.
|
1 | O48653 (/IEP) |
There are 5 GO terms relating to "biological process"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
|
1 | O48653 (/IDA) |
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
|
1 | O48653 (/IEP) |
Lagging strand elongation GO:0006273
The process in which an existing DNA strand is extended in a net 3' to 5' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Lagging strand DNA elongation proceeds by discontinuous synthesis of short stretches of DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined by DNA ligase. Although each segment of nascent DNA is synthesized in the 5' to 3' direction, the overall direction of lagging strand synthesis is 3' to 5', mirroring the progress of the replication fork.
|
1 | O48653 (/IDA) |
Lagging strand elongation GO:0006273
The process in which an existing DNA strand is extended in a net 3' to 5' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Lagging strand DNA elongation proceeds by discontinuous synthesis of short stretches of DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined by DNA ligase. Although each segment of nascent DNA is synthesized in the 5' to 3' direction, the overall direction of lagging strand synthesis is 3' to 5', mirroring the progress of the replication fork.
|
1 | O48653 (/IEP) |
Leaf morphogenesis GO:0009965
The process in which the anatomical structures of the leaf are generated and organized.
|
1 | Q9FHA3 (/IMP) |
There are 2 GO terms relating to "cellular component"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
|
1 | O48653 (/IDA) |
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
|
1 | O48653 (/IEP) |