The name of this superfamily has been modified since the most recent official CATH+ release (v4_4_0). At the point of the last release, this superfamily was named:

"
Peptidase S8 propeptide/proteinase inhibitor I9
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 11: Vacuolar protease B

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 3 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Serine-type endopeptidase activity GO:0004252
Catalysis of the hydrolysis of internal, alpha-peptide bonds in a polypeptide chain by a catalytic mechanism that involves a catalytic triad consisting of a serine nucleophile that is activated by a proton relay involving an acidic residue (e.g. aspartate or glutamate) and a basic residue (usually histidine).
1 P09232 (/IMP)
Serine-type endopeptidase activity GO:0004252
Catalysis of the hydrolysis of internal, alpha-peptide bonds in a polypeptide chain by a catalytic mechanism that involves a catalytic triad consisting of a serine nucleophile that is activated by a proton relay involving an acidic residue (e.g. aspartate or glutamate) and a basic residue (usually histidine).
1 P09232 (/ISA)
Serine-type endopeptidase activity GO:0004252
Catalysis of the hydrolysis of internal, alpha-peptide bonds in a polypeptide chain by a catalytic mechanism that involves a catalytic triad consisting of a serine nucleophile that is activated by a proton relay involving an acidic residue (e.g. aspartate or glutamate) and a basic residue (usually histidine).
1 Q59Z57 (/ISS)

There are 5 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Proteolysis GO:0006508
The hydrolysis of proteins into smaller polypeptides and/or amino acids by cleavage of their peptide bonds.
1 Q59Z57 (/ISS)
Protein catabolic process in the vacuole GO:0007039
The chemical reactions and pathways resulting in the breakdown of a protein in the vacuole, usually by the action of vacuolar proteases.
1 P09232 (/IMP)
Protein catabolic process in the vacuole GO:0007039
The chemical reactions and pathways resulting in the breakdown of a protein in the vacuole, usually by the action of vacuolar proteases.
1 Q59Z57 (/ISS)
Cellular response to starvation GO:0009267
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of deprivation of nourishment.
1 P09232 (/IMP)
Sporulation resulting in formation of a cellular spore GO:0030435
The process in which a relatively unspecialized cell acquires the specialized features of a cellular spore, a cell form that can be used for dissemination, for survival of adverse conditions because of its heat and dessication resistance, and/or for reproduction.
1 P09232 (/IMP)

There are 3 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Fungal-type vacuole GO:0000324
A vacuole that has both lytic and storage functions. The fungal vacuole is a large, membrane-bounded organelle that functions as a reservoir for the storage of small molecules (including polyphosphate, amino acids, several divalent cations (e.g. calcium), other ions, and other small molecules) as well as being the primary compartment for degradation. It is an acidic compartment, containing an ensemble of acid hydrolases. At least in S. cerevisiae, there are indications that the morphology of the vacuole is variable and correlated with the cell cycle, with logarithmically growing cells having a multilobed, reticulated vacuole, while stationary phase cells contain a single large structure.
1 Q59Z57 (/ISS)
Fungal-type vacuole GO:0000324
A vacuole that has both lytic and storage functions. The fungal vacuole is a large, membrane-bounded organelle that functions as a reservoir for the storage of small molecules (including polyphosphate, amino acids, several divalent cations (e.g. calcium), other ions, and other small molecules) as well as being the primary compartment for degradation. It is an acidic compartment, containing an ensemble of acid hydrolases. At least in S. cerevisiae, there are indications that the morphology of the vacuole is variable and correlated with the cell cycle, with logarithmically growing cells having a multilobed, reticulated vacuole, while stationary phase cells contain a single large structure.
1 P09232 (/TAS)
Fungal-type vacuole lumen GO:0000328
The volume enclosed within the vacuolar membrane of a vacuole, the shape of which correlates with cell cycle phase. An example of this structure is found in Saccharomyces cerevisiae.
1 P09232 (/TAS)
CATH-Gene3D is a Global Biodata Core Resource Learn more...