The name of this superfamily has been modified since the most recent official CATH+ release (v4_4_0). At the point of the last release, this superfamily was: waiting to be named.

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 1: DNA polymerase

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 32 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleotide binding GO:0000166
Interacting selectively and non-covalently with a nucleotide, any compound consisting of a nucleoside that is esterified with (ortho)phosphate or an oligophosphate at any hydroxyl group on the ribose or deoxyribose.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
7 O89042 (/IDA) P09884 (/IDA) P13382 (/IDA) P13382 (/IDA) P28040 (/IDA) P33609 (/IDA) Q59J86 (/IDA)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
6 P09884 (/IPI) P13382 (/IPI) P13382 (/IPI) P28040 (/IPI) P33609 (/IPI) Q9DE46 (/IPI)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
2 P09884 (/NAS) Q59J86 (/NAS)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
2 P09884 (/IDA) P28040 (/IDA)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
2 O89042 (/IMP) P09884 (/IMP)
Nucleotide binding GO:0000166
Interacting selectively and non-covalently with a nucleotide, any compound consisting of a nucleoside that is esterified with (ortho)phosphate or an oligophosphate at any hydroxyl group on the ribose or deoxyribose.
1 P09884 (/IDA)
Nucleotide binding GO:0000166
Interacting selectively and non-covalently with a nucleotide, any compound consisting of a nucleoside that is esterified with (ortho)phosphate or an oligophosphate at any hydroxyl group on the ribose or deoxyribose.
1 P33609 (/ISO)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 P09884 (/IDA)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 P33609 (/ISO)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
1 P33609 (/ISO)
DNA replication origin binding GO:0003688
Interacting selectively and non-covalently with the DNA replication origin, a unique DNA sequence of a replicon at which DNA replication is initiated and proceeds bidirectionally or unidirectionally.
1 P28040 (/IDA)
Double-stranded DNA binding GO:0003690
Interacting selectively and non-covalently with double-stranded DNA.
1 O89042 (/IDA)
Double-stranded DNA binding GO:0003690
Interacting selectively and non-covalently with double-stranded DNA.
1 P33609 (/ISO)
Single-stranded DNA binding GO:0003697
Interacting selectively and non-covalently with single-stranded DNA.
1 P28040 (/IDA)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 P28040 (/IGI)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 P33609 (/ISO)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 Q59J86 (/NAS)
DNA primase activity GO:0003896
Catalysis of the synthesis of a short RNA primer on a DNA template, providing a free 3'-OH that can be extended by DNA-directed DNA polymerases.
1 Q59J86 (/IDA)
Purine nucleotide binding GO:0017076
Interacting selectively and non-covalently with purine nucleotides, any compound consisting of a purine nucleoside esterified with (ortho)phosphate.
1 O89042 (/IMP)
Purine nucleotide binding GO:0017076
Interacting selectively and non-covalently with purine nucleotides, any compound consisting of a purine nucleoside esterified with (ortho)phosphate.
1 P33609 (/ISO)
Pyrimidine nucleotide binding GO:0019103
Interacting selectively and non-covalently with pyrimidine nucleotide, any compound consisting of a pyrimidine nucleoside esterified with (ortho)phosphate.
1 O89042 (/IMP)
Pyrimidine nucleotide binding GO:0019103
Interacting selectively and non-covalently with pyrimidine nucleotide, any compound consisting of a pyrimidine nucleoside esterified with (ortho)phosphate.
1 P33609 (/ISO)
Enzyme binding GO:0019899
Interacting selectively and non-covalently with any enzyme.
1 Q59J86 (/IDA)
Protein kinase binding GO:0019901
Interacting selectively and non-covalently with a protein kinase, any enzyme that catalyzes the transfer of a phosphate group, usually from ATP, to a protein substrate.
1 P09884 (/IPI)
Protein kinase binding GO:0019901
Interacting selectively and non-covalently with a protein kinase, any enzyme that catalyzes the transfer of a phosphate group, usually from ATP, to a protein substrate.
1 P33609 (/ISO)
DNA polymerase processivity factor activity GO:0030337
An enzyme regulator activity that increases the processivity of polymerization by DNA polymerase, by allowing the polymerase to move rapidly along DNA while remaining topologically bound to it.
1 Q59J86 (/IDA)
Protein-containing complex binding GO:0044877
Interacting selectively and non-covalently with a macromolecular complex.
1 Q59J86 (/IPI)
Protein heterodimerization activity GO:0046982
Interacting selectively and non-covalently with a nonidentical protein to form a heterodimer.
1 P33609 (/IPI)

There are 50 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
DNA replication, synthesis of RNA primer GO:0006269
The synthesis of a short RNA polymer, usually 4-15 nucleotides long, using one strand of unwound DNA as a template; the RNA then serves as a primer from which DNA polymerases extend synthesis.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
DNA strand elongation involved in DNA replication GO:0006271
The process in which an existing DNA strand is extended by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Leading strand elongation GO:0006272
The process in which an existing DNA strand is extended continuously in a 5' to 3' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Leading strand elongation proceeds in the same direction as the replication fork.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Lagging strand elongation GO:0006273
The process in which an existing DNA strand is extended in a net 3' to 5' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Lagging strand DNA elongation proceeds by discontinuous synthesis of short stretches of DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined by DNA ligase. Although each segment of nascent DNA is synthesized in the 5' to 3' direction, the overall direction of lagging strand synthesis is 3' to 5', mirroring the progress of the replication fork.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Double-strand break repair via nonhomologous end joining GO:0006303
The repair of a double-strand break in DNA in which the two broken ends are rejoined with little or no sequence complementarity. Information at the DNA ends may be lost due to the modification of broken DNA ends. This term covers instances of separate pathways, called classical (or canonical) and alternative nonhomologous end joining (C-NHEJ and A-NHEJ). These in turn may further branch into sub-pathways, but evidence is still unclear.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Cell population proliferation GO:0008283
The multiplication or reproduction of cells, resulting in the expansion of a cell population.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
5 O89042 (/IMP) P09884 (/IMP) P13382 (/IMP) P13382 (/IMP) P33609 (/IMP)
DNA synthesis involved in DNA repair GO:0000731
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end and uses the homologous intact duplex as the template.
3 P09884 (/IMP) P13382 (/IMP) P13382 (/IMP)
Premeiotic DNA replication GO:0006279
The replication of DNA that precedes meiotic cell division.
3 P13382 (/IMP) P13382 (/IMP) P28040 (/IMP)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
2 P33609 (/IDA) Q59J86 (/IDA)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
2 P13382 (/IC) P13382 (/IC)
Lagging strand elongation GO:0006273
The process in which an existing DNA strand is extended in a net 3' to 5' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Lagging strand DNA elongation proceeds by discontinuous synthesis of short stretches of DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined by DNA ligase. Although each segment of nascent DNA is synthesized in the 5' to 3' direction, the overall direction of lagging strand synthesis is 3' to 5', mirroring the progress of the replication fork.
2 P13382 (/IC) P13382 (/IC)
RNA-dependent DNA biosynthetic process GO:0006278
A DNA biosynthetic process that uses RNA as a template for RNA-dependent DNA polymerases (e.g. reverse transcriptase) that synthesize the new strand.
2 P13382 (/IDA) P13382 (/IDA)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
2 P09884 (/IMP) P28040 (/IMP)
Double-strand break repair GO:0006302
The repair of double-strand breaks in DNA via homologous and nonhomologous mechanisms to reform a continuous DNA helix.
2 P13382 (/IMP) P13382 (/IMP)
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 P09884 (/TAS)
Regulation of transcription involved in G1/S transition of mitotic cell cycle GO:0000083
Any process that regulates transcription such that the target genes are involved in the transition between G1 and S phase of the mitotic cell cycle.
1 P09884 (/TAS)
DNA synthesis involved in DNA repair GO:0000731
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end and uses the homologous intact duplex as the template.
1 Q59J86 (/IDA)
DNA synthesis involved in DNA repair GO:0000731
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end and uses the homologous intact duplex as the template.
1 P33609 (/ISO)
Gene conversion at mating-type locus, DNA repair synthesis GO:0000734
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end uses the homologous intact duplex as the template during gene conversion at the mating-type locus.
1 P28040 (/IMP)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 P33609 (/ISO)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q59J86 (/NAS)
DNA-dependent DNA replication GO:0006261
A DNA replication process that uses parental DNA as a template for the DNA-dependent DNA polymerases that synthesize the new strands.
1 Q59J86 (/IDA)
DNA replication, synthesis of RNA primer GO:0006269
The synthesis of a short RNA polymer, usually 4-15 nucleotides long, using one strand of unwound DNA as a template; the RNA then serves as a primer from which DNA polymerases extend synthesis.
1 P09884 (/IDA)
DNA replication, synthesis of RNA primer GO:0006269
The synthesis of a short RNA polymer, usually 4-15 nucleotides long, using one strand of unwound DNA as a template; the RNA then serves as a primer from which DNA polymerases extend synthesis.
1 P33609 (/ISO)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
1 P09884 (/IDA)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
1 P33609 (/ISO)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
1 P09884 (/TAS)
DNA strand elongation involved in DNA replication GO:0006271
The process in which an existing DNA strand is extended by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication.
1 P09884 (/IMP)
DNA strand elongation involved in DNA replication GO:0006271
The process in which an existing DNA strand is extended by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication.
1 P33609 (/ISO)
Leading strand elongation GO:0006272
The process in which an existing DNA strand is extended continuously in a 5' to 3' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Leading strand elongation proceeds in the same direction as the replication fork.
1 P09884 (/IDA)
Leading strand elongation GO:0006272
The process in which an existing DNA strand is extended continuously in a 5' to 3' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Leading strand elongation proceeds in the same direction as the replication fork.
1 P33609 (/ISO)
Lagging strand elongation GO:0006273
The process in which an existing DNA strand is extended in a net 3' to 5' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Lagging strand DNA elongation proceeds by discontinuous synthesis of short stretches of DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined by DNA ligase. Although each segment of nascent DNA is synthesized in the 5' to 3' direction, the overall direction of lagging strand synthesis is 3' to 5', mirroring the progress of the replication fork.
1 P09884 (/IDA)
Lagging strand elongation GO:0006273
The process in which an existing DNA strand is extended in a net 3' to 5' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Lagging strand DNA elongation proceeds by discontinuous synthesis of short stretches of DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined by DNA ligase. Although each segment of nascent DNA is synthesized in the 5' to 3' direction, the overall direction of lagging strand synthesis is 3' to 5', mirroring the progress of the replication fork.
1 P33609 (/ISO)
Mismatch repair GO:0006298
A system for the correction of errors in which an incorrect base, which cannot form hydrogen bonds with the corresponding base in the parent strand, is incorporated into the daughter strand. The mismatch repair system promotes genomic fidelity by repairing base-base mismatches, insertion-deletion loops and heterologies generated during DNA replication and recombination.
1 Q59J86 (/IDA)
Double-strand break repair via nonhomologous end joining GO:0006303
The repair of a double-strand break in DNA in which the two broken ends are rejoined with little or no sequence complementarity. Information at the DNA ends may be lost due to the modification of broken DNA ends. This term covers instances of separate pathways, called classical (or canonical) and alternative nonhomologous end joining (C-NHEJ and A-NHEJ). These in turn may further branch into sub-pathways, but evidence is still unclear.
1 P09884 (/IMP)
Double-strand break repair via nonhomologous end joining GO:0006303
The repair of a double-strand break in DNA in which the two broken ends are rejoined with little or no sequence complementarity. Information at the DNA ends may be lost due to the modification of broken DNA ends. This term covers instances of separate pathways, called classical (or canonical) and alternative nonhomologous end joining (C-NHEJ and A-NHEJ). These in turn may further branch into sub-pathways, but evidence is still unclear.
1 P33609 (/ISO)
Gene conversion at mating-type locus GO:0007534
The conversion of the mating-type locus from one allele to another resulting from the recombinational repair of a site-specific double-strand break at the mating-type locus with information from a silent donor sequence. There is no reciprocal exchange of information because the mating-type locus copies information from the donor sequence and the donor sequence remains unchanged.
1 P28040 (/IMP)
Cell population proliferation GO:0008283
The multiplication or reproduction of cells, resulting in the expansion of a cell population.
1 P09884 (/IDA)
Cell population proliferation GO:0008283
The multiplication or reproduction of cells, resulting in the expansion of a cell population.
1 P33609 (/ISO)
Cell differentiation GO:0030154
The process in which relatively unspecialized cells, e.g. embryonic or regenerative cells, acquire specialized structural and/or functional features that characterize the cells, tissues, or organs of the mature organism or some other relatively stable phase of the organism's life history. Differentiation includes the processes involved in commitment of a cell to a specific fate and its subsequent development to the mature state.
1 Q59J86 (/IDA)
Telomere maintenance via semi-conservative replication GO:0032201
The process in which telomeric DNA is synthesized semi-conservatively by the conventional replication machinery and telomeric accessory factors as part of cell cycle DNA replication.
1 P09884 (/TAS)
Negative regulation of cell differentiation GO:0045596
Any process that stops, prevents, or reduces the frequency, rate or extent of cell differentiation.
1 Q59J86 (/IDA)
Response to antibiotic GO:0046677
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an antibiotic stimulus. An antibiotic is a chemical substance produced by a microorganism which has the capacity to inhibit the growth of or to kill other microorganisms.
1 Q59J86 (/IDA)
DNA biosynthetic process GO:0071897
The cellular DNA metabolic process resulting in the formation of DNA, deoxyribonucleic acid, one of the two main types of nucleic acid, consisting of a long unbranched macromolecule formed from one or two strands of linked deoxyribonucleotides, the 3'-phosphate group of each constituent deoxyribonucleotide being joined in 3',5'-phosphodiester linkage to the 5'-hydroxyl group of the deoxyribose moiety of the next one.
1 O89042 (/IMP)
DNA biosynthetic process GO:0071897
The cellular DNA metabolic process resulting in the formation of DNA, deoxyribonucleic acid, one of the two main types of nucleic acid, consisting of a long unbranched macromolecule formed from one or two strands of linked deoxyribonucleotides, the 3'-phosphate group of each constituent deoxyribonucleotide being joined in 3',5'-phosphodiester linkage to the 5'-hydroxyl group of the deoxyribose moiety of the next one.
1 P33609 (/ISO)
Mitotic DNA replication initiation GO:1902975
Any DNA replication initiation involved in mitotic cell cycle DNA replication.
1 P28040 (/IMP)
Synthesis of RNA primer involved in mitotic DNA replication GO:1902981
Any synthesis of RNA primer involved in mitotic cell cycle DNA replication.
1 P28040 (/IGI)

There are 32 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Nuclear envelope GO:0005635
The double lipid bilayer enclosing the nucleus and separating its contents from the rest of the cytoplasm; includes the intermembrane space, a gap of width 20-40 nm (also called the perinuclear space).
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Alpha DNA polymerase:primase complex GO:0005658
A complex of four polypeptides, comprising large and small DNA polymerase alpha subunits and two primase subunits, which catalyzes the synthesis of an RNA primer on the lagging strand of replicating DNA; the smaller of the two primase subunits alone can catalyze oligoribonucleotide synthesis.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Nucleolus GO:0005730
A small, dense body one or more of which are present in the nucleus of eukaryotic cells. It is rich in RNA and protein, is not bounded by a limiting membrane, and is not seen during mitosis. Its prime function is the transcription of the nucleolar DNA into 45S ribosomal-precursor RNA, the processing of this RNA into 5.8S, 18S, and 28S components of ribosomal RNA, and the association of these components with 5S RNA and proteins synthesized outside the nucleolus. This association results in the formation of ribonucleoprotein precursors; these pass into the cytoplasm and mature into the 40S and 60S subunits of the ribosome.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Nuclear matrix GO:0016363
The dense fibrillar network lying on the inner side of the nuclear membrane.
7 O89042 (/ISS) P33609 (/ISS) Q59J86 (/ISS) Q59J88 (/ISS) Q59J89 (/ISS) Q59J90 (/ISS) Q9DE46 (/ISS)
Alpha DNA polymerase:primase complex GO:0005658
A complex of four polypeptides, comprising large and small DNA polymerase alpha subunits and two primase subunits, which catalyzes the synthesis of an RNA primer on the lagging strand of replicating DNA; the smaller of the two primase subunits alone can catalyze oligoribonucleotide synthesis.
6 O89042 (/IDA) P09884 (/IDA) P13382 (/IDA) P13382 (/IDA) P33609 (/IDA) Q59J86 (/IDA)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
4 P09884 (/IDA) P28040 (/IDA) P33609 (/IDA) Q59J86 (/IDA)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
3 A0A087WU64 (/IDA) A6NMQ1 (/IDA) P09884 (/IDA)
Cytosol GO:0005829
The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes.
3 A0A087WU64 (/IDA) A6NMQ1 (/IDA) P09884 (/IDA)
Replication fork GO:0005657
The Y-shaped region of a replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
2 P13382 (/IDA) P13382 (/IDA)
Mitochondrion GO:0005739
A semiautonomous, self replicating organelle that occurs in varying numbers, shapes, and sizes in the cytoplasm of virtually all eukaryotic cells. It is notably the site of tissue respiration.
2 P13382 (/HDA) P13382 (/HDA)
Nuclear chromosome, telomeric region GO:0000784
The terminal region of a linear nuclear chromosome that includes the telomeric DNA repeats and associated proteins.
1 P28040 (/IDA)
Nuclear chromatin GO:0000790
The ordered and organized complex of DNA, protein, and sometimes RNA, that forms the chromosome in the nucleus.
1 P28040 (/IDA)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 P28040 (/HDA)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 P33609 (/ISO)
Nuclear envelope GO:0005635
The double lipid bilayer enclosing the nucleus and separating its contents from the rest of the cytoplasm; includes the intermembrane space, a gap of width 20-40 nm (also called the perinuclear space).
1 P09884 (/IDA)
Nuclear envelope GO:0005635
The double lipid bilayer enclosing the nucleus and separating its contents from the rest of the cytoplasm; includes the intermembrane space, a gap of width 20-40 nm (also called the perinuclear space).
1 P33609 (/ISO)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
1 P33609 (/ISO)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
1 P09884 (/TAS)
Alpha DNA polymerase:primase complex GO:0005658
A complex of four polypeptides, comprising large and small DNA polymerase alpha subunits and two primase subunits, which catalyzes the synthesis of an RNA primer on the lagging strand of replicating DNA; the smaller of the two primase subunits alone can catalyze oligoribonucleotide synthesis.
1 O89042 (/IC)
Alpha DNA polymerase:primase complex GO:0005658
A complex of four polypeptides, comprising large and small DNA polymerase alpha subunits and two primase subunits, which catalyzes the synthesis of an RNA primer on the lagging strand of replicating DNA; the smaller of the two primase subunits alone can catalyze oligoribonucleotide synthesis.
1 P28040 (/IGI)
Alpha DNA polymerase:primase complex GO:0005658
A complex of four polypeptides, comprising large and small DNA polymerase alpha subunits and two primase subunits, which catalyzes the synthesis of an RNA primer on the lagging strand of replicating DNA; the smaller of the two primase subunits alone can catalyze oligoribonucleotide synthesis.
1 Q59J86 (/IPI)
Alpha DNA polymerase:primase complex GO:0005658
A complex of four polypeptides, comprising large and small DNA polymerase alpha subunits and two primase subunits, which catalyzes the synthesis of an RNA primer on the lagging strand of replicating DNA; the smaller of the two primase subunits alone can catalyze oligoribonucleotide synthesis.
1 P33609 (/ISO)
Alpha DNA polymerase:primase complex GO:0005658
A complex of four polypeptides, comprising large and small DNA polymerase alpha subunits and two primase subunits, which catalyzes the synthesis of an RNA primer on the lagging strand of replicating DNA; the smaller of the two primase subunits alone can catalyze oligoribonucleotide synthesis.
1 P09884 (/TAS)
Nucleolus GO:0005730
A small, dense body one or more of which are present in the nucleus of eukaryotic cells. It is rich in RNA and protein, is not bounded by a limiting membrane, and is not seen during mitosis. Its prime function is the transcription of the nucleolar DNA into 45S ribosomal-precursor RNA, the processing of this RNA into 5.8S, 18S, and 28S components of ribosomal RNA, and the association of these components with 5S RNA and proteins synthesized outside the nucleolus. This association results in the formation of ribonucleoprotein precursors; these pass into the cytoplasm and mature into the 40S and 60S subunits of the ribosome.
1 P09884 (/IDA)
Nucleolus GO:0005730
A small, dense body one or more of which are present in the nucleus of eukaryotic cells. It is rich in RNA and protein, is not bounded by a limiting membrane, and is not seen during mitosis. Its prime function is the transcription of the nucleolar DNA into 45S ribosomal-precursor RNA, the processing of this RNA into 5.8S, 18S, and 28S components of ribosomal RNA, and the association of these components with 5S RNA and proteins synthesized outside the nucleolus. This association results in the formation of ribonucleoprotein precursors; these pass into the cytoplasm and mature into the 40S and 60S subunits of the ribosome.
1 P33609 (/ISO)
Cytosol GO:0005829
The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes.
1 P33609 (/ISO)
Nuclear matrix GO:0016363
The dense fibrillar network lying on the inner side of the nuclear membrane.
1 P09884 (/IDA)
Nuclear matrix GO:0016363
The dense fibrillar network lying on the inner side of the nuclear membrane.
1 P33609 (/ISO)
Site of double-strand break GO:0035861
A region of a chromosome at which a DNA double-strand break has occurred. DNA damage signaling and repair proteins accumulate at the lesion to respond to the damage and repair the DNA to form a continuous DNA helix.
1 P28040 (/IDA)
Nuclear replication fork GO:0043596
The Y-shaped region of a nuclear replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
1 P28040 (/IGI)
CATH-Gene3D is a Global Biodata Core Resource Learn more...