The name of this superfamily has been modified since the most recent official CATH+ release (v4_4_0). At the point of the last release, this superfamily was named:

"
DNA polymerase, Y-family, little finger domain
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 1: DNA repair protein REV1

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 9 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
5 P12689 (/IPI) P12689 (/IPI) Q920Q2 (/IPI) Q9UBZ9 (/IPI) Q9W0P2 (/IPI)
Damaged DNA binding GO:0003684
Interacting selectively and non-covalently with damaged DNA.
3 Q4FKQ0 (/ISM) Q4FKQ0 (/ISM) Q4FKQ0 (/ISM)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
3 A3EWL3 (/IDA) P12689 (/IDA) P12689 (/IDA)
Deoxycytidyl transferase activity GO:0017125
Catalysis of the insertion of a dCMP residue opposite a template abasic site in DNA.
3 P12689 (/IDA) P12689 (/IDA) Q920Q2 (/IDA)
Damaged DNA binding GO:0003684
Interacting selectively and non-covalently with damaged DNA.
1 Q9UBZ9 (/TAS)
Deoxycytidyl transferase activity GO:0017125
Catalysis of the insertion of a dCMP residue opposite a template abasic site in DNA.
1 O94623 (/ISO)
Deoxycytidyl transferase activity GO:0017125
Catalysis of the insertion of a dCMP residue opposite a template abasic site in DNA.
1 Q9W0P2 (/ISS)
Deoxycytidyl transferase activity GO:0017125
Catalysis of the insertion of a dCMP residue opposite a template abasic site in DNA.
1 Q9W0P2 (/NAS)
Deoxycytidyl transferase activity GO:0017125
Catalysis of the insertion of a dCMP residue opposite a template abasic site in DNA.
1 Q9UBZ9 (/TAS)

There are 21 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
3 Q4FKQ0 (/ISM) Q4FKQ0 (/ISM) Q4FKQ0 (/ISM)
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
3 P12689 (/IDA) P12689 (/IDA) Q920Q2 (/IDA)
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
3 O94623 (/IMP) P12689 (/IMP) P12689 (/IMP)
Translesion synthesis GO:0019985
The replication of damaged DNA by synthesis across a lesion in the template strand; a specialized DNA polymerase or replication complex inserts a defined nucleotide across from the lesion which allows DNA synthesis to continue beyond the lesion. This process can be mutagenic depending on the damaged nucleotide and the inserted nucleotide.
2 Q4KWZ7 (/TAS) Q9UBZ9 (/TAS)
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
2 P12689 (/IGI) P12689 (/IGI)
Error-free translesion synthesis GO:0070987
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions but does not causes an increase in the endogenous mutation level. For S. cerevisiae, RAD30 encodes DNA polymerase eta, which incorporates two adenines. When incorporated across a thymine-thymine dimer, it does not increase the endogenous mutation level.
2 P12689 (/IDA) P12689 (/IDA)
Error-free translesion synthesis GO:0070987
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions but does not causes an increase in the endogenous mutation level. For S. cerevisiae, RAD30 encodes DNA polymerase eta, which incorporates two adenines. When incorporated across a thymine-thymine dimer, it does not increase the endogenous mutation level.
2 P12689 (/IMP) P12689 (/IMP)
Gene conversion of immunoglobulin genes GO:0002206
The somatic process in which immunoglobulin genes are diversified through the mechanism of gene conversion.
1 Q4KWZ7 (/IMP)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q9UBZ9 (/TAS)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
1 A1L461 (/IDA)
Double-strand break repair GO:0006302
The repair of double-strand breaks in DNA via homologous and nonhomologous mechanisms to reform a continuous DNA helix.
1 Q4KWZ7 (/IMP)
Cellular response to DNA damage stimulus GO:0006974
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism.
1 A3EWL3 (/IMP)
Response to UV GO:0009411
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an ultraviolet radiation (UV light) stimulus. Ultraviolet radiation is electromagnetic radiation with a wavelength in the range of 10 to 380 nanometers.
1 Q9UBZ9 (/IDA)
Response to UV GO:0009411
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an ultraviolet radiation (UV light) stimulus. Ultraviolet radiation is electromagnetic radiation with a wavelength in the range of 10 to 380 nanometers.
1 Q920Q2 (/ISO)
Response to UV-B GO:0010224
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a UV-B radiation stimulus. UV-B radiation (UV-B light) spans the wavelengths 280 to 315 nm.
1 A3EWL3 (/IMP)
Regulation of double-strand break repair via homologous recombination GO:0010569
Any process that modulates the frequency, rate or extent of the error-free repair of a double-strand break in DNA in which the broken DNA molecule is repaired using homologous sequences.
1 Q9W0P2 (/IMP)
Translesion synthesis GO:0019985
The replication of damaged DNA by synthesis across a lesion in the template strand; a specialized DNA polymerase or replication complex inserts a defined nucleotide across from the lesion which allows DNA synthesis to continue beyond the lesion. This process can be mutagenic depending on the damaged nucleotide and the inserted nucleotide.
1 Q9W0P2 (/ISS)
Translesion synthesis GO:0019985
The replication of damaged DNA by synthesis across a lesion in the template strand; a specialized DNA polymerase or replication complex inserts a defined nucleotide across from the lesion which allows DNA synthesis to continue beyond the lesion. This process can be mutagenic depending on the damaged nucleotide and the inserted nucleotide.
1 Q9W0P2 (/NAS)
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
1 Q9UBZ9 (/TAS)
Mitochondrial DNA repair GO:0043504
The process of restoring mitochondrial DNA after damage.
1 O94623 (/IC)
Error-free translesion synthesis GO:0070987
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions but does not causes an increase in the endogenous mutation level. For S. cerevisiae, RAD30 encodes DNA polymerase eta, which incorporates two adenines. When incorporated across a thymine-thymine dimer, it does not increase the endogenous mutation level.
1 O94623 (/IGI)

There are 12 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
3 O94623 (/HDA) P12689 (/HDA) P12689 (/HDA)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
3 Q4FKQ0 (/IDA) Q4FKQ0 (/IDA) Q4FKQ0 (/IDA)
Cytoplasm GO:0005737
All of the contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures.
3 Q4FKQ0 (/IDA) Q4FKQ0 (/IDA) Q4FKQ0 (/IDA)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
2 Q4KWZ7 (/TAS) Q9UBZ9 (/TAS)
Replication fork GO:0005657
The Y-shaped region of a replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
2 P12689 (/IPI) P12689 (/IPI)
Cytoplasm GO:0005737
All of the contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures.
2 P12689 (/HDA) P12689 (/HDA)
Mitochondrion GO:0005739
A semiautonomous, self replicating organelle that occurs in varying numbers, shapes, and sizes in the cytoplasm of virtually all eukaryotic cells. It is notably the site of tissue respiration.
2 P12689 (/IDA) P12689 (/IDA)
Mitochondrial chromosome GO:0000262
A chromosome found in the mitochondrion of a eukaryotic cell.
1 O94623 (/IC)
Replication fork GO:0005657
The Y-shaped region of a replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
1 Q9W0P2 (/ISS)
Nucleolus GO:0005730
A small, dense body one or more of which are present in the nucleus of eukaryotic cells. It is rich in RNA and protein, is not bounded by a limiting membrane, and is not seen during mitosis. Its prime function is the transcription of the nucleolar DNA into 45S ribosomal-precursor RNA, the processing of this RNA into 5.8S, 18S, and 28S components of ribosomal RNA, and the association of these components with 5S RNA and proteins synthesized outside the nucleolus. This association results in the formation of ribonucleoprotein precursors; these pass into the cytoplasm and mature into the 40S and 60S subunits of the ribosome.
1 O94623 (/HDA)
Site of double-strand break GO:0035861
A region of a chromosome at which a DNA double-strand break has occurred. DNA damage signaling and repair proteins accumulate at the lesion to respond to the damage and repair the DNA to form a continuous DNA helix.
1 O94623 (/IDA)
Mitotic spindle GO:0072686
A spindle that forms as part of mitosis. Mitotic and meiotic spindles contain distinctive complements of proteins associated with microtubules.
1 O94623 (/HDA)
CATH-Gene3D is a Global Biodata Core Resource Learn more...