The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
Palm domain of DNA polymerase
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 5: DNA polymerase epsilon catalytic subunit

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 12 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
2 Q9GV40 (/IDA) Q9VCN1 (/IDA)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
2 D3Z8X4 (/IMP) Q07864 (/IMP)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
2 Q9GV40 (/NAS) Q9VCN1 (/NAS)
3'-5'-exodeoxyribonuclease activity GO:0008296
Catalysis of the sequential cleavage of mononucleotides from a free 3' terminus of a DNA molecule.
2 Q9GV40 (/IDA) Q9VCN1 (/IDA)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 Q07864 (/IDA)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 Q9WVF7 (/ISO)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 Q07864 (/TAS)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
1 Q07864 (/IDA)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
1 Q9WVF7 (/ISO)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 Q9WVF7 (/ISO)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 Q54RD4 (/ISS)
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
1 Q07864 (/IPI)

There are 24 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Mitotic cell cycle GO:0000278
Progression through the phases of the mitotic cell cycle, the most common eukaryotic cell cycle, which canonically comprises four successive phases called G1, S, G2, and M and includes replication of the genome and the subsequent segregation of chromosomes into daughter cells. In some variant cell cycles nuclear replication or nuclear division may not be followed by cell division, or G1 and G2 phases may be absent.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
DNA-dependent DNA replication GO:0006261
A DNA replication process that uses parental DNA as a template for the DNA-dependent DNA polymerases that synthesize the new strands.
2 Q9GV40 (/IDA) Q9VCN1 (/IDA)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
Endomitotic cell cycle GO:0007113
A mitotic cell cycle in which chromosomes are replicated and sister chromatids separate, but spindle formation, nuclear membrane breakdown and nuclear division do not occur, resulting in an increased number of chromosomes in the cell.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
Organ growth GO:0035265
The increase in size or mass of an organ. Organs are commonly observed as visibly distinct structures, but may also exist as loosely associated clusters of cells that function together as to perform a specific function.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 Q07864 (/IMP)
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 Q9WVF7 (/ISO)
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 Q07864 (/TAS)
DNA synthesis involved in DNA repair GO:0000731
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end and uses the homologous intact duplex as the template.
1 Q07864 (/IMP)
DNA synthesis involved in DNA repair GO:0000731
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end and uses the homologous intact duplex as the template.
1 Q9WVF7 (/ISO)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q07864 (/IMP)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q9WVF7 (/ISO)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q07864 (/TAS)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
1 Q07864 (/TAS)
Leading strand elongation GO:0006272
The process in which an existing DNA strand is extended continuously in a 5' to 3' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Leading strand elongation proceeds in the same direction as the replication fork.
1 Q54RD4 (/ISS)
Base-excision repair, gap-filling GO:0006287
Repair of the damaged strand by the combined action of an apurinic endouclease that degrades a few bases on the damaged strand and a polymerase that synthesizes a 'patch' in the 5' to 3' direction, using the undamaged strand as a template.
1 Q07864 (/IDA)
Base-excision repair, gap-filling GO:0006287
Repair of the damaged strand by the combined action of an apurinic endouclease that degrades a few bases on the damaged strand and a polymerase that synthesizes a 'patch' in the 5' to 3' direction, using the undamaged strand as a template.
1 Q9WVF7 (/ISO)
Nucleotide-excision repair GO:0006289
A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts).
1 Q54RD4 (/ISS)
Nucleotide-excision repair, DNA gap filling GO:0006297
Repair of the gap in the DNA helix by DNA polymerase and DNA ligase after the portion of the strand containing the lesion has been removed by pyrimidine-dimer repair enzymes.
1 Q07864 (/IMP)
Nucleotide-excision repair, DNA gap filling GO:0006297
Repair of the gap in the DNA helix by DNA polymerase and DNA ligase after the portion of the strand containing the lesion has been removed by pyrimidine-dimer repair enzymes.
1 Q9WVF7 (/ISO)
Telomere maintenance via semi-conservative replication GO:0032201
The process in which telomeric DNA is synthesized semi-conservatively by the conventional replication machinery and telomeric accessory factors as part of cell cycle DNA replication.
1 Q07864 (/TAS)
Embryonic organ development GO:0048568
Development, taking place during the embryonic phase, of a tissue or tissues that work together to perform a specific function or functions. Development pertains to the process whose specific outcome is the progression of a structure over time, from its formation to the mature structure. Organs are commonly observed as visibly distinct structures, but may also exist as loosely associated clusters of cells that work together to perform a specific function or functions.
1 D3Z8X4 (/IEP)
DNA biosynthetic process GO:0071897
The cellular DNA metabolic process resulting in the formation of DNA, deoxyribonucleic acid, one of the two main types of nucleic acid, consisting of a long unbranched macromolecule formed from one or two strands of linked deoxyribonucleotides, the 3'-phosphate group of each constituent deoxyribonucleotide being joined in 3',5'-phosphodiester linkage to the 5'-hydroxyl group of the deoxyribose moiety of the next one.
1 D3Z8X4 (/IMP)
DNA biosynthetic process GO:0071897
The cellular DNA metabolic process resulting in the formation of DNA, deoxyribonucleic acid, one of the two main types of nucleic acid, consisting of a long unbranched macromolecule formed from one or two strands of linked deoxyribonucleotides, the 3'-phosphate group of each constituent deoxyribonucleotide being joined in 3',5'-phosphodiester linkage to the 5'-hydroxyl group of the deoxyribose moiety of the next one.
1 Q9WVF7 (/ISO)

There are 11 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
4 F5H1D6 (/IDA) Q07864 (/IDA) Q9GV40 (/IDA) Q9VCN1 (/IDA)
Epsilon DNA polymerase complex GO:0008622
A heterotetrameric DNA polymerase complex that catalyzes processive DNA synthesis in the absence of PCNA, but is further stimulated in the presence of PCNA. The complex contains a large catalytic subunit and three small subunits, and is best characterized in Saccharomyces, in which the subunits are named Pol2p, Dpb2p, Dpb3p, and Dpb4p. Some evidence suggests that DNA polymerase epsilon is the leading strand polymerase; it is also involved in nucleotide-excision repair and mismatch repair.
4 Q54RD4 (/ISS) Q9GV40 (/ISS) Q9VCN1 (/ISS) Q9WVF7 (/ISS)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
2 F5H1D6 (/IDA) Q07864 (/IDA)
Plasma membrane GO:0005886
The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins.
2 F5H1D6 (/IDA) Q07864 (/IDA)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 Q9WVF7 (/ISO)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
1 Q9WVF7 (/ISO)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
1 Q07864 (/TAS)
Replication fork GO:0005657
The Y-shaped region of a replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
1 Q54RD4 (/ISS)
Plasma membrane GO:0005886
The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins.
1 Q9WVF7 (/ISO)
Epsilon DNA polymerase complex GO:0008622
A heterotetrameric DNA polymerase complex that catalyzes processive DNA synthesis in the absence of PCNA, but is further stimulated in the presence of PCNA. The complex contains a large catalytic subunit and three small subunits, and is best characterized in Saccharomyces, in which the subunits are named Pol2p, Dpb2p, Dpb3p, and Dpb4p. Some evidence suggests that DNA polymerase epsilon is the leading strand polymerase; it is also involved in nucleotide-excision repair and mismatch repair.
1 Q07864 (/IDA)
Epsilon DNA polymerase complex GO:0008622
A heterotetrameric DNA polymerase complex that catalyzes processive DNA synthesis in the absence of PCNA, but is further stimulated in the presence of PCNA. The complex contains a large catalytic subunit and three small subunits, and is best characterized in Saccharomyces, in which the subunits are named Pol2p, Dpb2p, Dpb3p, and Dpb4p. Some evidence suggests that DNA polymerase epsilon is the leading strand polymerase; it is also involved in nucleotide-excision repair and mismatch repair.
1 Q9WVF7 (/ISO)