The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
Ribonuclease H-like superfamily/Ribonuclease H
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 187: DNA polymerase

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 1 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 Q57UW4 (/TAS)

There are 1 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Lagging strand elongation GO:0006273
The process in which an existing DNA strand is extended in a net 3' to 5' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Lagging strand DNA elongation proceeds by discontinuous synthesis of short stretches of DNA, known as Okazaki fragments, from RNA primers; these fragments are then joined by DNA ligase. Although each segment of nascent DNA is synthesized in the 5' to 3' direction, the overall direction of lagging strand synthesis is 3' to 5', mirroring the progress of the replication fork.
1 Q57UW4 (/TAS)

There are 3 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 Q57UW4 (/IC)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 Q57UW4 (/IDA)
RNA polymerase I complex GO:0005736
RNA polymerase I, one of three nuclear DNA-directed RNA polymerases found in all eukaryotes, is a multisubunit complex; typically it produces rRNAs. Two large subunits comprise the most conserved portion including the catalytic site and share similarity with other eukaryotic and bacterial multisubunit RNA polymerases. The remainder of the complex is composed of smaller subunits (generally ten or more), some of which are also found in RNA polymerase III and others of which are also found in RNA polymerases II and III. Although the core is competent to mediate ribonucleic acid synthesis, it requires additional factors to select the appropriate template.
1 Q57UW4 (/TAS)
CATH-Gene3D is a Global Biodata Core Resource Learn more...