The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
Ribonuclease H-like superfamily/Ribonuclease H
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 156: DNA polymerase

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 3 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
2 P14284 (/IDA) P14284 (/IDA)
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
2 P14284 (/IPI) P14284 (/IPI)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 Q9P6L6 (/ISM)

There are 6 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
2 P14284 (/IDA) P14284 (/IDA)
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
2 P14284 (/IGI) P14284 (/IGI)
Error-free translesion synthesis GO:0070987
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions but does not causes an increase in the endogenous mutation level. For S. cerevisiae, RAD30 encodes DNA polymerase eta, which incorporates two adenines. When incorporated across a thymine-thymine dimer, it does not increase the endogenous mutation level.
2 P14284 (/IDA) P14284 (/IDA)
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
1 Q9P6L6 (/IMP)
Mitochondrial DNA repair GO:0043504
The process of restoring mitochondrial DNA after damage.
1 Q9P6L6 (/IC)
Error-free translesion synthesis GO:0070987
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions but does not causes an increase in the endogenous mutation level. For S. cerevisiae, RAD30 encodes DNA polymerase eta, which incorporates two adenines. When incorporated across a thymine-thymine dimer, it does not increase the endogenous mutation level.
1 Q9P6L6 (/IGI)

There are 7 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Mitochondrion GO:0005739
A semiautonomous, self replicating organelle that occurs in varying numbers, shapes, and sizes in the cytoplasm of virtually all eukaryotic cells. It is notably the site of tissue respiration.
2 P14284 (/IDA) P14284 (/IDA)
Zeta DNA polymerase complex GO:0016035
A heterodimeric DNA polymerase complex that catalyzes error-prone DNA synthesis in contexts such as translesion synthesis and double-stranded break repair. First characterized in Saccharomyces, in which the subunits are Rev3p and Rev7p; a third protein, Rev1p, is often associated with the polymerase dimer.
2 P14284 (/IDA) P14284 (/IDA)
Mitochondrial chromosome GO:0000262
A chromosome found in the mitochondrion of a eukaryotic cell.
1 Q9P6L6 (/IC)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 Q9P6L6 (/HDA)
Cytosol GO:0005829
The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes.
1 Q9P6L6 (/HDA)
Zeta DNA polymerase complex GO:0016035
A heterodimeric DNA polymerase complex that catalyzes error-prone DNA synthesis in contexts such as translesion synthesis and double-stranded break repair. First characterized in Saccharomyces, in which the subunits are Rev3p and Rev7p; a third protein, Rev1p, is often associated with the polymerase dimer.
1 Q9P6L6 (/ISO)
Nuclear replication fork GO:0043596
The Y-shaped region of a nuclear replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
1 Q9P6L6 (/IC)
CATH-Gene3D is a Global Biodata Core Resource Learn more...