The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:
"Cullin; Chain C, Domain 2
".
FunFam 31: Cullin
Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.
There are 1 GO terms relating to "molecular function"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
Ubiquitin-protein transferase activity GO:0004842
Catalysis of the transfer of ubiquitin from one protein to another via the reaction X-Ub + Y --> Y-Ub + X, where both X-Ub and Y-Ub are covalent linkages.
|
1 | O60999 (/ISS) |
There are 6 GO terms relating to "biological process"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
|
1 | O60999 (/ISS) |
Chemotaxis GO:0006935
The directed movement of a motile cell or organism, or the directed growth of a cell guided by a specific chemical concentration gradient. Movement may be towards a higher concentration (positive chemotaxis) or towards a lower concentration (negative chemotaxis).
|
1 | O60999 (/IMP) |
Cell differentiation GO:0030154
The process in which relatively unspecialized cells, e.g. embryonic or regenerative cells, acquire specialized structural and/or functional features that characterize the cells, tissues, or organs of the mature organism or some other relatively stable phase of the organism's life history. Differentiation includes the processes involved in commitment of a cell to a specific fate and its subsequent development to the mature state.
|
1 | O60999 (/IMP) |
Sorocarp development GO:0030587
The process whose specific outcome is the progression of the sorocarp over time, from its formation to the mature structure. The process begins with the aggregation of individual cells and ends with the mature sorocarp. The sorocarp is a structure containing a spore-bearing sorus that sits on top of a stalk. An example of this process is found in Dictyostelium discoideum.
|
1 | O60999 (/IMP) |
Negative regulation of sorocarp stalk cell differentiation GO:0031286
Any process that stops, prevents, or reduces the frequency, rate or extent of sorocarp stalk cell differentiation. An example of this process is found in Dictyostelium discoideum.
|
1 | Q9XZJ3 (/IGI) |
Negative regulation of sorocarp stalk cell differentiation GO:0031286
Any process that stops, prevents, or reduces the frequency, rate or extent of sorocarp stalk cell differentiation. An example of this process is found in Dictyostelium discoideum.
|
1 | Q9XZJ3 (/IMP) |
There are 1 GO terms relating to "cellular component"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
SCF ubiquitin ligase complex GO:0019005
A ubiquitin ligase complex in which a cullin from the Cul1 subfamily and a RING domain protein form the catalytic core; substrate specificity is conferred by a Skp1 adaptor and an F-box protein. SCF complexes are involved in targeting proteins for degradation by the proteasome. The best characterized complexes are those from yeast and mammals (with core subunits named Cdc53/Cul1, Rbx1/Hrt1/Roc1).
|
1 | O60999 (/IDA) |