The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
RWD domain-like
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 1: E3 ubiquitin-protein ligase FANCL

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 9 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Ubiquitin-protein transferase activity GO:0004842
Catalysis of the transfer of ubiquitin from one protein to another via the reaction X-Ub + Y --> Y-Ub + X, where both X-Ub and Y-Ub are covalent linkages.
6 B8JHS6 (/ISS) Q1X868 (/ISS) Q3MUH5 (/ISS) Q6NY39 (/ISS) Q7SXP5 (/ISS) Q9NW38 (/ISS)
Ubiquitin-protein transferase activity GO:0004842
Catalysis of the transfer of ubiquitin from one protein to another via the reaction X-Ub + Y --> Y-Ub + X, where both X-Ub and Y-Ub are covalent linkages.
2 Q9CR14 (/IDA) Q9NW38 (/IDA)
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
2 Q9CR14 (/IPI) Q9NW38 (/IPI)
Ubiquitin protein ligase activity GO:0061630
Catalysis of the transfer of ubiquitin to a substrate protein via the reaction X-ubiquitin + S -> X + S-ubiquitin, where X is either an E2 or E3 enzyme, the X-ubiquitin linkage is a thioester bond, and the S-ubiquitin linkage is an amide bond: an isopeptide bond between the C-terminal glycine of ubiquitin and the epsilon-amino group of lysine residues in the substrate or, in the linear extension of ubiquitin chains, a peptide bond the between the C-terminal glycine and N-terminal methionine of ubiquitin residues.
2 Q9CR14 (/IDA) Q9NW38 (/IDA)
Ubiquitin-protein transferase activity GO:0004842
Catalysis of the transfer of ubiquitin from one protein to another via the reaction X-Ub + Y --> Y-Ub + X, where both X-Ub and Y-Ub are covalent linkages.
1 Q9CR14 (/ISO)
Ubiquitin-protein transferase activity GO:0004842
Catalysis of the transfer of ubiquitin from one protein to another via the reaction X-Ub + Y --> Y-Ub + X, where both X-Ub and Y-Ub are covalent linkages.
1 Q3MUH5 (/TAS)
Ubiquitin protein ligase binding GO:0031625
Interacting selectively and non-covalently with a ubiquitin protein ligase enzyme, any of the E3 proteins.
1 Q9NW38 (/IPI)
Ubiquitin protein ligase binding GO:0031625
Interacting selectively and non-covalently with a ubiquitin protein ligase enzyme, any of the E3 proteins.
1 Q9CR14 (/ISO)
Ubiquitin protein ligase activity GO:0061630
Catalysis of the transfer of ubiquitin to a substrate protein via the reaction X-ubiquitin + S -> X + S-ubiquitin, where X is either an E2 or E3 enzyme, the X-ubiquitin linkage is a thioester bond, and the S-ubiquitin linkage is an amide bond: an isopeptide bond between the C-terminal glycine of ubiquitin and the epsilon-amino group of lysine residues in the substrate or, in the linear extension of ubiquitin chains, a peptide bond the between the C-terminal glycine and N-terminal methionine of ubiquitin residues.
1 Q9CR14 (/ISO)

There are 14 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Oocyte development GO:0048599
The process whose specific outcome is the progression of an oocyte over time, from initial commitment of the cell to its specific fate, to the fully functional differentiated cell.
4 B8JHS6 (/IMP) Q1X868 (/IMP) Q6NY39 (/IMP) Q7SXP5 (/IMP)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
2 Q3MUH5 (/ISS) Q9CR14 (/ISS)
Protein monoubiquitination GO:0006513
Addition of a single ubiquitin group to a protein.
2 Q3MUH5 (/ISS) Q9CR14 (/ISS)
Cellular response to DNA damage stimulus GO:0006974
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism.
2 Q54CR0 (/IMP) Q9NW38 (/IMP)
Cellular response to DNA damage stimulus GO:0006974
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism.
2 Q3MUH5 (/ISS) Q9CR14 (/ISS)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
1 Q9NW38 (/IMP)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
1 Q9CR14 (/ISO)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
1 Q3MUH5 (/TAS)
Protein monoubiquitination GO:0006513
Addition of a single ubiquitin group to a protein.
1 Q9NW38 (/IDA)
Protein monoubiquitination GO:0006513
Addition of a single ubiquitin group to a protein.
1 Q9CR14 (/ISO)
Cellular response to DNA damage stimulus GO:0006974
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism.
1 Q9CR14 (/ISO)
Gamete generation GO:0007276
The generation and maintenance of gametes in a multicellular organism. A gamete is a haploid reproductive cell.
1 Q9CR14 (/IMP)
Interstrand cross-link repair GO:0036297
Removal of a DNA interstrand crosslink (a covalent attachment of DNA bases on opposite strands of the DNA) and restoration of the DNA. DNA interstrand crosslinks occur when both strands of duplex DNA are covalently tethered together (e.g. by an exogenous or endogenous agent), thus preventing the strand unwinding necessary for essential DNA functions such as transcription and replication.
1 Q9NW38 (/TAS)
Regulation of cell population proliferation GO:0042127
Any process that modulates the frequency, rate or extent of cell proliferation.
1 Q9CR14 (/IMP)

There are 9 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nuclear body GO:0016604
Extra-nucleolar nuclear domains usually visualized by confocal microscopy and fluorescent antibodies to specific proteins.
3 C9JZA9 (/IDA) H7C1M0 (/IDA) Q9NW38 (/IDA)
Intracellular membrane-bounded organelle GO:0043231
Organized structure of distinctive morphology and function, bounded by a single or double lipid bilayer membrane and occurring within the cell. Includes the nucleus, mitochondria, plastids, vacuoles, and vesicles. Excludes the plasma membrane.
3 C9JZA9 (/IDA) H7C1M0 (/IDA) Q9NW38 (/IDA)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
2 Q3MUH5 (/TAS) Q9NW38 (/TAS)
Nuclear envelope GO:0005635
The double lipid bilayer enclosing the nucleus and separating its contents from the rest of the cytoplasm; includes the intermembrane space, a gap of width 20-40 nm (also called the perinuclear space).
1 Q9CR14 (/IPI)
Nuclear body GO:0016604
Extra-nucleolar nuclear domains usually visualized by confocal microscopy and fluorescent antibodies to specific proteins.
1 Q9CR14 (/ISO)
Intracellular membrane-bounded organelle GO:0043231
Organized structure of distinctive morphology and function, bounded by a single or double lipid bilayer membrane and occurring within the cell. Includes the nucleus, mitochondria, plastids, vacuoles, and vesicles. Excludes the plasma membrane.
1 Q9CR14 (/ISO)
Fanconi anaemia nuclear complex GO:0043240
A protein complex composed of the Fanconi anaemia (FA) proteins including A, C, E, G and F (FANCA-F). Functions in the activation of the downstream protein FANCD2 by monoubiquitylation, and is essential for protection against chromosome breakage.
1 Q9NW38 (/IDA)
Fanconi anaemia nuclear complex GO:0043240
A protein complex composed of the Fanconi anaemia (FA) proteins including A, C, E, G and F (FANCA-F). Functions in the activation of the downstream protein FANCD2 by monoubiquitylation, and is essential for protection against chromosome breakage.
1 Q9CR14 (/ISO)
Fanconi anaemia nuclear complex GO:0043240
A protein complex composed of the Fanconi anaemia (FA) proteins including A, C, E, G and F (FANCA-F). Functions in the activation of the downstream protein FANCD2 by monoubiquitylation, and is essential for protection against chromosome breakage.
1 Q9CR14 (/ISS)
CATH-Gene3D is a Global Biodata Core Resource Learn more...