The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
YVTN repeat-like/Quinoprotein amine dehydrogenase
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 847: F-box protein MET30

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 3 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
1 P39014 (/IPI)
Identical protein binding GO:0042802
Interacting selectively and non-covalently with an identical protein or proteins.
1 P39014 (/IPI)
Ubiquitin binding GO:0043130
Interacting selectively and non-covalently with ubiquitin, a protein that when covalently bound to other cellular proteins marks them for proteolytic degradation.
1 P39014 (/IDA)

There are 10 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 P39014 (/IMP)
Regulation of transcription involved in G1/S transition of mitotic cell cycle GO:0000083
Any process that regulates transcription such that the target genes are involved in the transition between G1 and S phase of the mitotic cell cycle.
1 P39014 (/IMP)
Protein polyubiquitination GO:0000209
Addition of multiple ubiquitin groups to a protein, forming a ubiquitin chain.
1 P39014 (/IMP)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
1 P39014 (/IMP)
Protein ubiquitination GO:0016567
The process in which one or more ubiquitin groups are added to a protein.
1 P39014 (/IGI)
Protein ubiquitination GO:0016567
The process in which one or more ubiquitin groups are added to a protein.
1 P39014 (/IPI)
Regulation of DNA-dependent DNA replication initiation GO:0030174
Any process that modulates the frequency, rate or extent of initiation of DNA-dependent DNA replication; the process in which DNA becomes competent to replicate. In eukaryotes, replication competence is established in early G1 and lost during the ensuing S phase.
1 P39014 (/IMP)
SCF-dependent proteasomal ubiquitin-dependent protein catabolic process GO:0031146
The chemical reactions and pathways resulting in the breakdown of a protein or peptide by hydrolysis of its peptide bonds, initiated by the covalent attachment of ubiquitin, with ubiquitin-protein ligation catalyzed by an SCF (Skp1/Cul1/F-box protein) complex, and mediated by the proteasome.
1 P39014 (/IGI)
Response to arsenic-containing substance GO:0046685
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an arsenic stimulus from compounds containing arsenic, including arsenates, arsenites, and arsenides.
1 P39014 (/IDA)
Response to cadmium ion GO:0046686
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a cadmium (Cd) ion stimulus.
1 P39014 (/IDA)

There are 3 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 P39014 (/IDA)
SCF ubiquitin ligase complex GO:0019005
A ubiquitin ligase complex in which a cullin from the Cul1 subfamily and a RING domain protein form the catalytic core; substrate specificity is conferred by a Skp1 adaptor and an F-box protein. SCF complexes are involved in targeting proteins for degradation by the proteasome. The best characterized complexes are those from yeast and mammals (with core subunits named Cdc53/Cul1, Rbx1/Hrt1/Roc1).
1 P39014 (/IDA)
Nuclear SCF ubiquitin ligase complex GO:0043224
A ubiquitin ligase complex, located in the nucleus, in which a cullin from the Cul1 subfamily and a RING domain protein form the catalytic core; substrate specificity is conferred by a Skp1 adaptor and an F-box protein. SCF complexes are involved in targeting proteins for degradation by the proteasome. The best characterized complexes are those from yeast and mammals (with core subunits named Cdc53/Cul1, Rbx1/Hrt1/Roc1).
1 P39014 (/IDA)
CATH-Gene3D is a Global Biodata Core Resource Learn more...