The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
Autophagy protein Apg5, helix rich domain
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 11:

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 1 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
1 Q54GT9 (/IPI)

There are 6 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Cellular response to nitrogen starvation GO:0006995
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of deprivation of nitrogen.
1 Q54GT9 (/IMP)
Macroautophagy GO:0016236
The major inducible pathway for the general turnover of cytoplasmic constituents in eukaryotic cells, it is also responsible for the degradation of active cytoplasmic enzymes and organelles during nutrient starvation. Macroautophagy involves the formation of double-membrane-bounded autophagosomes which enclose the cytoplasmic constituent targeted for degradation in a membrane-bounded structure. Autophagosomes then fuse with a lysosome (or vacuole) releasing single-membrane-bounded autophagic bodies that are then degraded within the lysosome (or vacuole). Some types of macroautophagy, e.g. pexophagy, mitophagy, involve selective targeting of the targets to be degraded.
1 Q54GT9 (/IMP)
Sporulation resulting in formation of a cellular spore GO:0030435
The process in which a relatively unspecialized cell acquires the specialized features of a cellular spore, a cell form that can be used for dissemination, for survival of adverse conditions because of its heat and dessication resistance, and/or for reproduction.
1 Q54GT9 (/IMP)
Sorocarp development GO:0030587
The process whose specific outcome is the progression of the sorocarp over time, from its formation to the mature structure. The process begins with the aggregation of individual cells and ends with the mature sorocarp. The sorocarp is a structure containing a spore-bearing sorus that sits on top of a stalk. An example of this process is found in Dictyostelium discoideum.
1 Q54GT9 (/IMP)
Sorocarp morphogenesis GO:0031288
The process in which the sorocarp is generated and organized. An example of this process is found in Dictyostelium discoideum.
1 Q54GT9 (/IMP)
Defense response to bacterium GO:0042742
Reactions triggered in response to the presence of a bacterium that act to protect the cell or organism.
1 Q54GT9 (/IDA)

There are 1 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Cytoplasm GO:0005737
All of the contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures.
1 Q54GT9 (/IDA)
CATH-Gene3D is a Global Biodata Core Resource Learn more...