The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
5' to 3' exonuclease, C-terminal subdomain
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 275: DNA repair protein rad16

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 2 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
1 P36617 (/IPI)
3' overhang single-stranded DNA endodeoxyribonuclease activity GO:1990599
Catalysis of the hydrolysis of ester linkages within 3' overhang single-stranded deoxyribonucleic acid by creating internal breaks.
1 P36617 (/IDA)

There are 8 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Double-strand break repair via homologous recombination GO:0000724
The error-free repair of a double-strand break in DNA in which the broken DNA molecule is repaired using homologous sequences. A strand in the broken DNA searches for a homologous region in an intact chromosome to serve as the template for DNA synthesis. The restoration of two intact DNA molecules results in the exchange, reciprocal or nonreciprocal, of genetic material between the intact DNA molecule and the broken DNA molecule.
1 P36617 (/IMP)
Nucleotide-excision repair GO:0006289
A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts).
1 P36617 (/IGI)
Nucleotide-excision repair, DNA incision, 5'-to lesion GO:0006296
The endonucleolytic cleavage of the damaged strand of DNA 5' to the site of damage. The incision occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. The incision follows the incision formed 3' to the site of damage.
1 P36617 (/TAS)
Reciprocal meiotic recombination GO:0007131
The cell cycle process in which double strand breaks are formed and repaired through a double Holliday junction intermediate. This results in the equal exchange of genetic material between non-sister chromatids in a pair of homologous chromosomes. These reciprocal recombinant products ensure the proper segregation of homologous chromosomes during meiosis I and create genetic diversity.
1 P36617 (/IMP)
Mating type switching GO:0007533
The conversion of a single-cell organism from one mating type to another by the precise replacement of a DNA sequence at the expressed mating type locus with a copy of a sequence from a donor locus.
1 P36617 (/IMP)
Gene conversion at mating-type locus GO:0007534
The conversion of the mating-type locus from one allele to another resulting from the recombinational repair of a site-specific double-strand break at the mating-type locus with information from a silent donor sequence. There is no reciprocal exchange of information because the mating-type locus copies information from the donor sequence and the donor sequence remains unchanged.
1 P36617 (/IMP)
Double-strand break repair via single-strand annealing GO:0045002
Repair of a DSB made between two repeated sequences oriented in the same direction occurs primarily by the single strand annealing pathway. The ends of the break are processed by a 5' to 3' exonuclease, exposing complementary single-strand regions of the direct repeats that can anneal, resulting in a deletion of the unique DNA between the direct repeats.
1 P36617 (/IMP)
Nucleotide-excision repair involved in interstrand cross-link repair GO:1901255
Any nucleotide-excision repair that is involved in interstrand cross-link repair.
1 P36617 (/IMP)

There are 3 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleotide-excision repair factor 1 complex GO:0000110
One of several protein complexes involved in nucleotide-excision repair; possesses DNA damage recognition and endodeoxynuclease activities. In S. cerevisiae, it is composed of Rad1p, Rad10p, and Rad14p; in human the subunits are ERCC4/XPF, ERCC1 and XPA, respectively.
1 P36617 (/IPI)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 P36617 (/HDA)
Mitotic spindle pole body GO:0044732
The microtubule organizing center that forms as part of the mitotic cell cycle; functionally homologous to the animal cell centrosome.
1 P36617 (/HDA)