The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:

"
Winged helix-like DNA-binding domain superfamily/Winged helix DNA-binding domain
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 675: Cell division cycle-related protein

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 4 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA replication origin binding GO:0003688
Interacting selectively and non-covalently with the DNA replication origin, a unique DNA sequence of a replicon at which DNA replication is initiated and proceeds bidirectionally or unidirectionally.
2 Q12018 (/IDA) Q12018 (/IDA)
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
2 Q12018 (/IPI) Q12018 (/IPI)
Protein binding, bridging GO:0030674
The binding activity of a molecule that brings together two or more protein molecules, or a protein and another macromolecule or complex, through a selective, non-covalent, often stoichiometric interaction, permitting those molecules to function in a coordinated way.
2 Q12018 (/IMP) Q12018 (/IMP)
Protein binding, bridging GO:0030674
The binding activity of a molecule that brings together two or more protein molecules, or a protein and another macromolecule or complex, through a selective, non-covalent, often stoichiometric interaction, permitting those molecules to function in a coordinated way.
2 Q12018 (/IPI) Q12018 (/IPI)

There are 10 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
2 Q12018 (/IMP) Q12018 (/IMP)
G2/M transition of mitotic cell cycle GO:0000086
The mitotic cell cycle transition by which a cell in G2 commits to M phase. The process begins when the kinase activity of M cyclin/CDK complex reaches a threshold high enough for the cell cycle to proceed. This is accomplished by activating a positive feedback loop that results in the accumulation of unphosphorylated and active M cyclin/CDK complex.
2 Q12018 (/IGI) Q12018 (/IGI)
Ubiquitin-dependent protein catabolic process GO:0006511
The chemical reactions and pathways resulting in the breakdown of a protein or peptide by hydrolysis of its peptide bonds, initiated by the covalent attachment of a ubiquitin group, or multiple ubiquitin groups, to the protein.
2 Q12018 (/IDA) Q12018 (/IDA)
SCF-dependent proteasomal ubiquitin-dependent protein catabolic process GO:0031146
The chemical reactions and pathways resulting in the breakdown of a protein or peptide by hydrolysis of its peptide bonds, initiated by the covalent attachment of ubiquitin, with ubiquitin-protein ligation catalyzed by an SCF (Skp1/Cul1/F-box protein) complex, and mediated by the proteasome.
2 Q12018 (/IDA) Q12018 (/IDA)
Regulation of cellular amino acid metabolic process GO:0006521
Any process that modulates the frequency, rate or extent of the chemical reactions and pathways involving amino acids.
1 Q5AJB7 (/IMP)
Regulation of filamentous growth GO:0010570
Any process that modulates the frequency, rate or extent of the process in which a multicellular organism or a group of unicellular organisms grow in a threadlike, filamentous shape.
1 Q5AJB7 (/IMP)
Filamentous growth GO:0030447
The process in which a multicellular organism, a unicellular organism or a group of unicellular organisms grow in a threadlike, filamentous shape.
1 Q5AJB7 (/IMP)
SCF-dependent proteasomal ubiquitin-dependent protein catabolic process GO:0031146
The chemical reactions and pathways resulting in the breakdown of a protein or peptide by hydrolysis of its peptide bonds, initiated by the covalent attachment of ubiquitin, with ubiquitin-protein ligation catalyzed by an SCF (Skp1/Cul1/F-box protein) complex, and mediated by the proteasome.
1 Q5AJB7 (/IMP)
SCF-dependent proteasomal ubiquitin-dependent protein catabolic process GO:0031146
The chemical reactions and pathways resulting in the breakdown of a protein or peptide by hydrolysis of its peptide bonds, initiated by the covalent attachment of ubiquitin, with ubiquitin-protein ligation catalyzed by an SCF (Skp1/Cul1/F-box protein) complex, and mediated by the proteasome.
1 Q5AJB7 (/ISA)
Growth of unicellular organism as a thread of attached cells GO:0070783
A filamentous growth process in which cells remain attached after division and form thread-like filaments that may penetrate into a solid growth medium such as an agar plate, exhibited by unicellular fungi under certain growth conditions.
1 Q5AJB7 (/IMP)

There are 3 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
SCF ubiquitin ligase complex GO:0019005
A ubiquitin ligase complex in which a cullin from the Cul1 subfamily and a RING domain protein form the catalytic core; substrate specificity is conferred by a Skp1 adaptor and an F-box protein. SCF complexes are involved in targeting proteins for degradation by the proteasome. The best characterized complexes are those from yeast and mammals (with core subunits named Cdc53/Cul1, Rbx1/Hrt1/Roc1).
2 Q12018 (/IDA) Q12018 (/IDA)
SCF ubiquitin ligase complex GO:0019005
A ubiquitin ligase complex in which a cullin from the Cul1 subfamily and a RING domain protein form the catalytic core; substrate specificity is conferred by a Skp1 adaptor and an F-box protein. SCF complexes are involved in targeting proteins for degradation by the proteasome. The best characterized complexes are those from yeast and mammals (with core subunits named Cdc53/Cul1, Rbx1/Hrt1/Roc1).
2 Q12018 (/IPI) Q12018 (/IPI)
SCF ubiquitin ligase complex GO:0019005
A ubiquitin ligase complex in which a cullin from the Cul1 subfamily and a RING domain protein form the catalytic core; substrate specificity is conferred by a Skp1 adaptor and an F-box protein. SCF complexes are involved in targeting proteins for degradation by the proteasome. The best characterized complexes are those from yeast and mammals (with core subunits named Cdc53/Cul1, Rbx1/Hrt1/Roc1).
1 Q5AJB7 (/ISA)
CATH-Gene3D is a Global Biodata Core Resource Learn more...