CATH Classification

Domain Context

CATH Clusters

Superfamily Glutaredoxin
Functional Family DOT5p Nuclear thiol peroxidase

Enzyme Information

1.11.1.15
Peroxiredoxin.
based on mapping to UniProt P40553
2 R'-SH + ROOH = R'-S-S-R' + H(2)O + ROH.
-!- Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins. -!- They can be divided into three classes: typical 2-Cys, atypical 2-Cys and 1-Cys peroxiredoxins. -!- The peroxidase reaction comprises two steps centered around a redox- active cysteine called the peroxidatic cysteine. -!- All three peroxiredoxin classes have the first step in common, in which the peroxidatic cysteine attacks the peroxide substrate and is oxidized to S-hydroxycysteine (a sulfenic acid). -!- The second step of the peroxidase reaction, the regeneration of cysteine from S-hydroxycysteine, distinguishes the three peroxiredoxin classes. -!- For typical 2-Cys Prxs, in the second step, the peroxidatic S-hydroxycysteine from one subunit is attacked by the 'resolving' cysteine located in the C-terminus of the second subunit, to form an intersubunit disulfide bond, which is then reduced by one of several cell-specific thiol-containing reductants (R'-SH) (e.g. thioredoxin, AhpF, tryparedoxin or AhpD), completing the catalytic cycle. -!- In the atypical 2-Cys Prxs, both the peroxidatic cysteine and its resolving cysteine are in the same polypeptide, so their reaction forms an intrachain disulfide bond. -!- To recycle the disulfide, known atypical 2-Cys Prxs appear to use thioredoxin as an electron donor. -!- The 1-Cys Prxs conserve only the peroxidatic cysteine, so that its oxidized form is directly reduced to cysteine by the reductant molecule.

UniProtKB Entries (1)

P40553
DOT5_YEAST
Saccharomyces cerevisiae S288C
Peroxiredoxin DOT5

PDB Structure

PDB 2A4V
External Links
Method X-RAY DIFFRACTION
Organism Escherichia
Primary Citation
Crystal structure of the C107S/C112S mutant of yeast nuclear 2-Cys peroxiredoxin
Choi, J., Choi, S., Chon, J.-K., Choi, J., Cha, M.-K., Kim, I.-H., Shin, W.
Proteins
CATH-Gene3D is a Global Biodata Core Resource Learn more...