The name of this superfamily has been modified since the most recent official CATH+ release (v4_2_0). At the point of the last release, this superfamily was named:

"
P-loop containing nucleotide triphosphate hydrolases
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 631067: DNA-directed DNA polymerase theta

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 19 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
2 F1NMU1 (/ISS) Q8CGS6 (/ISS)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
2 O75417 (/IMP) Q8CGS6 (/IMP)
Helicase activity GO:0004386
Catalysis of the reaction: NTP + H2O = NDP + phosphate, to drive the unwinding of a DNA or RNA helix.
2 O18475 (/ISS) Q9VSE2 (/ISS)
5'-deoxyribose-5-phosphate lyase activity GO:0051575
Catalysis of the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site in DNA where a DNA-(apurinic or apyrimidinic site) lyase has already cleaved the C-O-P bond 3' to the apurinic or apyrimidinic site.
2 F1NMU1 (/ISS) Q8CGS6 (/ISS)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
1 O75417 (/IDA)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
1 Q8CGS6 (/ISO)
Damaged DNA binding GO:0003684
Interacting selectively and non-covalently with damaged DNA.
1 O75417 (/TAS)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 O75417 (/IDA)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 Q8CGS6 (/ISO)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 F1NMU1 (/ISS)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 O75417 (/TAS)
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
1 O75417 (/IPI)
Single-stranded DNA-dependent ATP-dependent DNA helicase activity GO:0017116
Catalysis of the reaction: ATP + H2O = ADP + phosphate, in the presence of single-stranded DNA; drives the unwinding of a DNA helix.
1 H2KY86 (/IDA)
Single-stranded DNA-dependent ATP-dependent DNA helicase activity GO:0017116
Catalysis of the reaction: ATP + H2O = ADP + phosphate, in the presence of single-stranded DNA; drives the unwinding of a DNA helix.
1 Q2VPA6 (/ISO)
Single-stranded DNA-dependent ATPase activity GO:0043142
Catalysis of the reaction: ATP + H2O = ADP + phosphate; this reaction requires the presence of single-stranded DNA, and it drives another reaction.
1 O75417 (/IDA)
Single-stranded DNA-dependent ATPase activity GO:0043142
Catalysis of the reaction: ATP + H2O = ADP + phosphate; this reaction requires the presence of single-stranded DNA, and it drives another reaction.
1 Q8CGS6 (/ISO)
ATPase binding GO:0051117
Interacting selectively and non-covalently with an ATPase, any enzyme that catalyzes the hydrolysis of ATP.
1 H2KY86 (/IPI)
5'-deoxyribose-5-phosphate lyase activity GO:0051575
Catalysis of the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site in DNA where a DNA-(apurinic or apyrimidinic site) lyase has already cleaved the C-O-P bond 3' to the apurinic or apyrimidinic site.
1 O75417 (/IDA)
5'-deoxyribose-5-phosphate lyase activity GO:0051575
Catalysis of the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site in DNA where a DNA-(apurinic or apyrimidinic site) lyase has already cleaved the C-O-P bond 3' to the apurinic or apyrimidinic site.
1 Q8CGS6 (/ISO)

There are 49 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
2 O18475 (/TAS) O75417 (/TAS)
Base-excision repair GO:0006284
In base excision repair, an altered base is removed by a DNA glycosylase enzyme, followed by excision of the resulting sugar phosphate. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase.
2 F1NMU1 (/ISS) Q8CGS6 (/ISS)
Double-strand break repair GO:0006302
The repair of double-strand breaks in DNA via homologous and nonhomologous mechanisms to reform a continuous DNA helix.
2 F1NMU1 (/ISS) Q8CGS6 (/ISS)
Cellular response to DNA damage stimulus GO:0006974
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism.
2 F1NMU1 (/ISS) Q8CGS6 (/ISS)
Somatic hypermutation of immunoglobulin genes GO:0016446
Mutations occurring somatically that result in amino acid changes in the rearranged V regions of immunoglobulins.
2 F1NMU1 (/ISS) O75417 (/ISS)
Protein homooligomerization GO:0051260
The process of creating protein oligomers, compounds composed of a small number, usually between three and ten, of identical component monomers. Oligomers may be formed by the polymerization of a number of monomers or the depolymerization of a large protein polymer.
2 F1NMU1 (/ISS) Q8CGS6 (/ISS)
Double-strand break repair via alternative nonhomologous end joining GO:0097681
An instance of double-strand break repair via nonhomologous end joining that is independent of factors important for V(D)J recombination (as opposed to classical nonhomologous end joining). It often results in a deletion with microhomology (i.e. 5-25bp homology) at the repair junction. Among different subclasses of nonhomologous end joining (NHEJ), alternative NHEJ appears to play a significant role in the etiology of mutations that arise during cancer development and treatment.
2 O75417 (/IDA) Q8CGS6 (/IDA)
Negative regulation of double-strand break repair via homologous recombination GO:2000042
Any process that stops, prevents, or reduces the frequency, rate or extent of double-strand break repair via homologous recombination.
2 O75417 (/IDA) Q8CGS6 (/IDA)
Resolution of meiotic recombination intermediates GO:0000712
The cleavage and rejoining of intermediates, such as Holliday junctions, formed during meiotic recombination to produce two intact molecules in which genetic material has been exchanged.
1 H2KY86 (/IGI)
Double-strand break repair via homologous recombination GO:0000724
The error-free repair of a double-strand break in DNA in which the broken DNA molecule is repaired using homologous sequences. A strand in the broken DNA searches for a homologous region in an intact chromosome to serve as the template for DNA synthesis. The restoration of two intact DNA molecules results in the exchange, reciprocal or nonreciprocal, of genetic material between the intact DNA molecule and the broken DNA molecule.
1 Q8TDG4 (/IMP)
Double-strand break repair via homologous recombination GO:0000724
The error-free repair of a double-strand break in DNA in which the broken DNA molecule is repaired using homologous sequences. A strand in the broken DNA searches for a homologous region in an intact chromosome to serve as the template for DNA synthesis. The restoration of two intact DNA molecules results in the exchange, reciprocal or nonreciprocal, of genetic material between the intact DNA molecule and the broken DNA molecule.
1 Q2VPA6 (/ISO)
Double-strand break repair via homologous recombination GO:0000724
The error-free repair of a double-strand break in DNA in which the broken DNA molecule is repaired using homologous sequences. A strand in the broken DNA searches for a homologous region in an intact chromosome to serve as the template for DNA synthesis. The restoration of two intact DNA molecules results in the exchange, reciprocal or nonreciprocal, of genetic material between the intact DNA molecule and the broken DNA molecule.
1 O75417 (/TAS)
DNA metabolic process GO:0006259
Any cellular metabolic process involving deoxyribonucleic acid. This is one of the two main types of nucleic acid, consisting of a long, unbranched macromolecule formed from one, or more commonly, two, strands of linked deoxyribonucleotides.
1 Q2VPA6 (/ISO)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
1 Q8CGS6 (/IGI)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
1 Q8CGS6 (/IMP)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
1 O18475 (/NAS)
Base-excision repair GO:0006284
In base excision repair, an altered base is removed by a DNA glycosylase enzyme, followed by excision of the resulting sugar phosphate. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase.
1 O75417 (/IDA)
Base-excision repair GO:0006284
In base excision repair, an altered base is removed by a DNA glycosylase enzyme, followed by excision of the resulting sugar phosphate. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase.
1 Q8CGS6 (/ISO)
Nucleotide-excision repair GO:0006289
A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts).
1 O18475 (/IMP)
Double-strand break repair GO:0006302
The repair of double-strand breaks in DNA via homologous and nonhomologous mechanisms to reform a continuous DNA helix.
1 O75417 (/IDA)
Double-strand break repair GO:0006302
The repair of double-strand breaks in DNA via homologous and nonhomologous mechanisms to reform a continuous DNA helix.
1 Q8CGS6 (/ISO)
Regulation of translation GO:0006417
Any process that modulates the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of proteins by the translation of mRNA.
1 Q9VSE2 (/TAS)
Cellular response to DNA damage stimulus GO:0006974
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism.
1 O75417 (/IDA)
Cellular response to DNA damage stimulus GO:0006974
Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism.
1 Q8CGS6 (/ISO)
Germarium-derived oocyte fate determination GO:0007294
The cell fate determination process in which a germarium-derived cell becomes capable of differentiating autonomously into an oocyte cell regardless of its environment; upon determination, the cell fate cannot be reversed. An example of this is found in Drosophila melanogaster.
1 Q9VSE2 (/IGI)
Germarium-derived oocyte fate determination GO:0007294
The cell fate determination process in which a germarium-derived cell becomes capable of differentiating autonomously into an oocyte cell regardless of its environment; upon determination, the cell fate cannot be reversed. An example of this is found in Drosophila melanogaster.
1 Q9VSE2 (/IMP)
Intracellular mRNA localization GO:0008298
Any process in which mRNA is transported to, or maintained in, a specific location within the cell.
1 Q9VSE2 (/IMP)
Intracellular mRNA localization GO:0008298
Any process in which mRNA is transported to, or maintained in, a specific location within the cell.
1 Q9VSE2 (/TAS)
Photomorphogenesis GO:0009640
The control of plant growth, development, and differentiation by the duration and nature of light, independent of photosynthesis.
1 Q588V7 (/IMP)
Meristem structural organization GO:0009933
Organization of a region of tissue in a plant that is composed of one or more undifferentiated cells capable of undergoing mitosis and differentiation, thereby effecting growth and development of a plant by giving rise to more meristem or specialized tissue.
1 Q588V7 (/IMP)
Polarity specification of anterior/posterior axis GO:0009949
Any process resulting in the establishment of polarity along the anterior/posterior axis.
1 Q9VSE2 (/IMP)
Polarity specification of dorsal/ventral axis GO:0009951
Any process resulting in the establishment of polarity along the dorsal/ventral axis.
1 Q9VSE2 (/IMP)
Regulation of gene expression GO:0010468
Any process that modulates the frequency, rate or extent of gene expression. Gene expression is the process in which a gene's coding sequence is converted into a mature gene product or products (proteins or RNA). This includes the production of an RNA transcript as well as any processing to produce a mature RNA product or an mRNA (for protein-coding genes) and the translation of that mRNA into protein. Protein maturation is included when required to form an active form of a product from an inactive precursor form.
1 Q588V7 (/IGI)
Female meiosis chromosome segregation GO:0016321
The cell cycle process in which genetic material, in the form of chromosomes, is organized and then physically separated and apportioned to two or more sets during the meiotic cell cycle in a female.
1 Q9VSE2 (/IMP)
Somatic hypermutation of immunoglobulin genes GO:0016446
Mutations occurring somatically that result in amino acid changes in the rearranged V regions of immunoglobulins.
1 Q8CGS6 (/IMP)
Karyosome formation GO:0030717
The chromosome organization process in which meiotic chromosomes in the oocyte nucleus cluster together to form a compact spherical structure called the karyosome.
1 Q9VSE2 (/IMP)
Oogenesis GO:0048477
The complete process of formation and maturation of an ovum or female gamete from a primordial female germ cell. Examples of this process are found in Mus musculus and Drosophila melanogaster.
1 Q9VSE2 (/IGI)
Oogenesis GO:0048477
The complete process of formation and maturation of an ovum or female gamete from a primordial female germ cell. Examples of this process are found in Mus musculus and Drosophila melanogaster.
1 Q9VSE2 (/TAS)
Protein homooligomerization GO:0051260
The process of creating protein oligomers, compounds composed of a small number, usually between three and ten, of identical component monomers. Oligomers may be formed by the polymerization of a number of monomers or the depolymerization of a large protein polymer.
1 O75417 (/IDA)
Protein homooligomerization GO:0051260
The process of creating protein oligomers, compounds composed of a small number, usually between three and ten, of identical component monomers. Oligomers may be formed by the polymerization of a number of monomers or the depolymerization of a large protein polymer.
1 Q8CGS6 (/ISO)
Cell division GO:0051301
The process resulting in division and partitioning of components of a cell to form more cells; may or may not be accompanied by the physical separation of a cell into distinct, individually membrane-bounded daughter cells.
1 Q588V7 (/IMP)
Double-strand break repair via alternative nonhomologous end joining GO:0097681
An instance of double-strand break repair via nonhomologous end joining that is independent of factors important for V(D)J recombination (as opposed to classical nonhomologous end joining). It often results in a deletion with microhomology (i.e. 5-25bp homology) at the repair junction. Among different subclasses of nonhomologous end joining (NHEJ), alternative NHEJ appears to play a significant role in the etiology of mutations that arise during cancer development and treatment.
1 O18475 (/IMP)
Double-strand break repair via alternative nonhomologous end joining GO:0097681
An instance of double-strand break repair via nonhomologous end joining that is independent of factors important for V(D)J recombination (as opposed to classical nonhomologous end joining). It often results in a deletion with microhomology (i.e. 5-25bp homology) at the repair junction. Among different subclasses of nonhomologous end joining (NHEJ), alternative NHEJ appears to play a significant role in the etiology of mutations that arise during cancer development and treatment.
1 Q8CGS6 (/ISO)
Double-strand break repair via alternative nonhomologous end joining GO:0097681
An instance of double-strand break repair via nonhomologous end joining that is independent of factors important for V(D)J recombination (as opposed to classical nonhomologous end joining). It often results in a deletion with microhomology (i.e. 5-25bp homology) at the repair junction. Among different subclasses of nonhomologous end joining (NHEJ), alternative NHEJ appears to play a significant role in the etiology of mutations that arise during cancer development and treatment.
1 F1NMU1 (/ISS)
Regulation of cell cycle G2/M phase transition GO:1902749
Any process that modulates the frequency, rate or extent of cell cycle G2/M phase transition.
1 Q588V7 (/IMP)
Intrachromosomal DNA recombination GO:1990067
The process of DNA recombination occurring within a single chromosome.
1 Q588V7 (/IMP)
Regulation of adaxial/abaxial pattern formation GO:2000011
Any process that modulates the frequency, rate or extent of adaxial/abaxial pattern formation.
1 Q588V7 (/IMP)
Negative regulation of double-strand break repair via homologous recombination GO:2000042
Any process that stops, prevents, or reduces the frequency, rate or extent of double-strand break repair via homologous recombination.
1 Q8CGS6 (/ISO)
Negative regulation of double-strand break repair via homologous recombination GO:2000042
Any process that stops, prevents, or reduces the frequency, rate or extent of double-strand break repair via homologous recombination.
1 F1NMU1 (/ISS)

There are 2 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
1 O75417 (/TAS)
Single-stranded DNA-dependent ATP-dependent DNA helicase complex GO:0017117
A protein complex that possesses single-stranded DNA-dependent DNA helicase activity.
1 Q2VPA6 (/ISO)
CATH-Gene3D is a Global Biodata Core Resource Learn more...