The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was named:
"von Willebrand factor, type A domain
".
FunFam 15: General transcription factor IIH subunit 2
Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.
There are 7 GO terms relating to "molecular function"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
Ubiquitin protein ligase activity GO:0061630
Catalysis of the transfer of ubiquitin to a substrate protein via the reaction X-ubiquitin + S -> X + S-ubiquitin, where X is either an E2 or E3 enzyme, the X-ubiquitin linkage is a thioester bond, and the S-ubiquitin linkage is an amide bond: an isopeptide bond between the C-terminal glycine of ubiquitin and the epsilon-amino group of lysine residues in the substrate or, in the linear extension of ubiquitin chains, a peptide bond the between the C-terminal glycine and N-terminal methionine of ubiquitin residues.
|
6 | Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) |
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
|
2 | Q13888 (/IPI) Q6P1K8 (/IPI) |
RNA polymerase II general transcription initiation factor activity GO:0016251
An activity that contributes to transcription start site selection and transcription initiation of genes transcribed by RNA polymerase II. The general transcription factors for RNA polymerase II include TFIIB, TFIID, TFIIE, TFIIF, TFIIH and TATA-binding protein (TBP).
|
1 | O74995 (/IC) |
RNA polymerase II general transcription initiation factor activity GO:0016251
An activity that contributes to transcription start site selection and transcription initiation of genes transcribed by RNA polymerase II. The general transcription factors for RNA polymerase II include TFIIB, TFIID, TFIIE, TFIIF, TFIIH and TATA-binding protein (TBP).
|
1 | Q13888 (/IDA) |
RNA polymerase II general transcription initiation factor activity GO:0016251
An activity that contributes to transcription start site selection and transcription initiation of genes transcribed by RNA polymerase II. The general transcription factors for RNA polymerase II include TFIIB, TFIID, TFIIE, TFIIF, TFIIH and TATA-binding protein (TBP).
|
1 | Q9JIB4 (/ISO) |
Protein N-terminus binding GO:0047485
Interacting selectively and non-covalently with a protein N-terminus, the end of any peptide chain at which the 2-amino (or 2-imino) function of a constituent amino acid is not attached in peptide linkage to another amino-acid residue.
|
1 | Q13888 (/IPI) |
Protein N-terminus binding GO:0047485
Interacting selectively and non-covalently with a protein N-terminus, the end of any peptide chain at which the 2-amino (or 2-imino) function of a constituent amino acid is not attached in peptide linkage to another amino-acid residue.
|
1 | Q9JIB4 (/ISO) |
There are 32 GO terms relating to "biological process"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
Transcription by RNA polymerase II GO:0006366
The synthesis of RNA from a DNA template by RNA polymerase II (RNAP II), originating at an RNA polymerase II promoter. Includes transcription of messenger RNA (mRNA) and certain small nuclear RNAs (snRNAs).
|
8 | Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q13888 (/IDA) Q9VNP8 (/IDA) |
Nucleotide-excision repair GO:0006289
A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts).
|
6 | Q04673 (/IMP) Q04673 (/IMP) Q04673 (/IMP) Q04673 (/IMP) Q04673 (/IMP) Q04673 (/IMP) |
Phosphorylation of RNA polymerase II C-terminal domain GO:0070816
The process of introducing a phosphate group on to an amino acid residue in the C-terminal domain of RNA polymerase II. Typically, this occurs during the transcription cycle and results in production of an RNA polymerase II enzyme where the carboxy-terminal domain (CTD) of the largest subunit is extensively phosphorylated, often referred to as hyperphosphorylated or the II(0) form. Specific types of phosphorylation within the CTD are usually associated with specific regions of genes, though there are exceptions. The phosphorylation state regulates the association of specific complexes such as the capping enzyme or 3'-RNA processing machinery to the elongating RNA polymerase complex.
|
6 | Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) |
Transcription by RNA polymerase II GO:0006366
The synthesis of RNA from a DNA template by RNA polymerase II (RNAP II), originating at an RNA polymerase II promoter. Includes transcription of messenger RNA (mRNA) and certain small nuclear RNAs (snRNAs).
|
5 | A0JN27 (/ISS) Q2TBV5 (/ISS) Q2TBV5 (/ISS) Q86KZ2 (/ISS) Q9JIB4 (/ISS) |
Nucleotide-excision repair GO:0006289
A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts).
|
2 | Q9ZVN9 (/IGI) Q9ZVN9 (/IGI) |
Nucleotide-excision repair GO:0006289
A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts).
|
2 | Q86KZ2 (/ISS) Q9VNP8 (/ISS) |
Regulation of transcription by RNA polymerase II GO:0006357
Any process that modulates the frequency, rate or extent of transcription mediated by RNA polymerase II.
|
2 | Q9ZVN9 (/IGI) Q9ZVN9 (/IGI) |
Nucleotide-excision repair, DNA duplex unwinding GO:0000717
The unwinding, or local denaturation, of the DNA duplex to create a bubble around the site of the DNA damage.
|
1 | Q13888 (/TAS) |
Promoter clearance from RNA polymerase II promoter GO:0001111
Any process involved in the transition from the initiation to the elongation phases of transcription by RNA polymerase II, generally including a conformational change from the initiation conformation to the elongation conformation. Promoter clearance often involves breaking contact with transcription factors involved only in the initiation phase and making contacts with elongation specific factors.
|
1 | Q9VNP8 (/ISS) |
Transcriptional open complex formation at RNA polymerase II promoter GO:0001113
Any process involved in the melting of the DNA hybrid of the core promoter region within the transcriptional closed complex of an RNA polymerase II preinitiation complex (PIC) to produce an open complex where the DNA duplex around the transcription initiation site is unwound to form the transcription bubble.
|
1 | Q9VNP8 (/ISS) |
G protein-coupled receptor internalization GO:0002031
The process that results in the uptake of a G protein-coupled receptor into an endocytic vesicle.
|
1 | Q13888 (/IMP) |
G protein-coupled receptor internalization GO:0002031
The process that results in the uptake of a G protein-coupled receptor into an endocytic vesicle.
|
1 | Q9JIB4 (/ISO) |
Transcription-coupled nucleotide-excision repair GO:0006283
The nucleotide-excision repair process that carries out preferential repair of DNA lesions on the actively transcribed strand of the DNA duplex. In addition, the transcription-coupled nucleotide-excision repair pathway is required for the recognition and repair of a small subset of lesions that are not recognized by the global genome nucleotide excision repair pathway.
|
1 | Q13888 (/TAS) |
Nucleotide-excision repair, preincision complex stabilization GO:0006293
The stabilization of the multiprotein complex involved in damage recognition, DNA helix unwinding, and endonucleolytic cleavage at the site of DNA damage as well as the unwound DNA. The stabilization of the protein-DNA complex ensures proper positioning of the preincision complex before the phosphodiester backbone of the damaged strand is cleaved 3' and 5' of the site of DNA damage.
|
1 | Q13888 (/TAS) |
Nucleotide-excision repair, preincision complex assembly GO:0006294
The aggregation, arrangement and bonding together of proteins on DNA to form the multiprotein complex involved in damage recognition, DNA helix unwinding, and endonucleolytic cleavage at the site of DNA damage. This assembly occurs before the phosphodiester backbone of the damaged strand is cleaved 3' and 5' of the site of DNA damage.
|
1 | Q13888 (/TAS) |
Nucleotide-excision repair, DNA incision, 3'-to lesion GO:0006295
The endonucleolytic cleavage of the damaged strand of DNA 3' to the site of damage. The incision occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. The incision precedes the incision formed 5' to the site of damage.
|
1 | Q13888 (/TAS) |
Nucleotide-excision repair, DNA incision, 5'-to lesion GO:0006296
The endonucleolytic cleavage of the damaged strand of DNA 5' to the site of damage. The incision occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. The incision follows the incision formed 3' to the site of damage.
|
1 | Q13888 (/TAS) |
Transcription initiation from RNA polymerase I promoter GO:0006361
Any process involved in the assembly of the RNA polymerase I preinitiation complex (PIC) at an RNA polymerase I promoter region of a DNA template, resulting in the subsequent synthesis of RNA from that promoter. The initiation phase includes PIC assembly and the formation of the first few bonds in the RNA chain, including abortive initiation, which occurs when the first few nucleotides are repeatedly synthesized and then released. Promoter clearance, or release, is the transition between the initiation and elongation phases of transcription.
|
1 | Q13888 (/TAS) |
Transcription elongation from RNA polymerase I promoter GO:0006362
The extension of an RNA molecule after transcription initiation and promoter clearance at an RNA polymerase I specific promoter by the addition of ribonucleotides catalyzed by RNA polymerase I.
|
1 | Q13888 (/TAS) |
Termination of RNA polymerase I transcription GO:0006363
The process in which the synthesis of an RNA molecule by RNA polymerase I using a DNA template is completed. RNAP I termination requires binding of a terminator protein so specific sequences downstream of the transcription unit.
|
1 | Q13888 (/TAS) |
Transcription by RNA polymerase II GO:0006366
The synthesis of RNA from a DNA template by RNA polymerase II (RNAP II), originating at an RNA polymerase II promoter. Includes transcription of messenger RNA (mRNA) and certain small nuclear RNAs (snRNAs).
|
1 | Q9JIB4 (/ISO) |
Transcription by RNA polymerase II GO:0006366
The synthesis of RNA from a DNA template by RNA polymerase II (RNAP II), originating at an RNA polymerase II promoter. Includes transcription of messenger RNA (mRNA) and certain small nuclear RNAs (snRNAs).
|
1 | Q13888 (/TAS) |
Transcription initiation from RNA polymerase II promoter GO:0006367
Any process involved in the assembly of the RNA polymerase II preinitiation complex (PIC) at an RNA polymerase II promoter region of a DNA template, resulting in the subsequent synthesis of RNA from that promoter. The initiation phase includes PIC assembly and the formation of the first few bonds in the RNA chain, including abortive initiation, which occurs when the first few nucleotides are repeatedly synthesized and then released. Promoter clearance, or release, is the transition between the initiation and elongation phases of transcription.
|
1 | O74995 (/IC) |
Transcription initiation from RNA polymerase II promoter GO:0006367
Any process involved in the assembly of the RNA polymerase II preinitiation complex (PIC) at an RNA polymerase II promoter region of a DNA template, resulting in the subsequent synthesis of RNA from that promoter. The initiation phase includes PIC assembly and the formation of the first few bonds in the RNA chain, including abortive initiation, which occurs when the first few nucleotides are repeatedly synthesized and then released. Promoter clearance, or release, is the transition between the initiation and elongation phases of transcription.
|
1 | Q9VNP8 (/ISS) |
Transcription initiation from RNA polymerase II promoter GO:0006367
Any process involved in the assembly of the RNA polymerase II preinitiation complex (PIC) at an RNA polymerase II promoter region of a DNA template, resulting in the subsequent synthesis of RNA from that promoter. The initiation phase includes PIC assembly and the formation of the first few bonds in the RNA chain, including abortive initiation, which occurs when the first few nucleotides are repeatedly synthesized and then released. Promoter clearance, or release, is the transition between the initiation and elongation phases of transcription.
|
1 | Q13888 (/TAS) |
Transcription elongation from RNA polymerase II promoter GO:0006368
The extension of an RNA molecule after transcription initiation and promoter clearance at an RNA polymerase II promoter by the addition of ribonucleotides catalyzed by RNA polymerase II.
|
1 | Q13888 (/TAS) |
7-methylguanosine mRNA capping GO:0006370
Addition of the 7-methylguanosine cap to the 5' end of a nascent messenger RNA transcript.
|
1 | Q13888 (/TAS) |
Response to UV GO:0009411
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an ultraviolet radiation (UV light) stimulus. Ultraviolet radiation is electromagnetic radiation with a wavelength in the range of 10 to 380 nanometers.
|
1 | Q13888 (/TAS) |
Nucleotide-excision repair, DNA incision GO:0033683
A process that results in the endonucleolytic cleavage of the damaged strand of DNA. The incision occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound.
|
1 | Q13888 (/TAS) |
Global genome nucleotide-excision repair GO:0070911
The nucleotide-excision repair process in which DNA lesions are removed from nontranscribed strands and from transcriptionally silent regions over the entire genome.
|
1 | Q13888 (/TAS) |
Positive regulation of DNA helicase activity GO:1905776
Any process that activates or increases the frequency, rate or extent of ATP-dependent DNA helicase activity.
|
1 | Q13888 (/IDA) |
Positive regulation of DNA helicase activity GO:1905776
Any process that activates or increases the frequency, rate or extent of ATP-dependent DNA helicase activity.
|
1 | Q9JIB4 (/ISO) |
There are 22 GO terms relating to "cellular component"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
Transcription factor TFIIH holo complex GO:0005675
A complex that is capable of kinase activity directed towards the C-terminal Domain (CTD) of the largest subunit of RNA polymerase II and is essential for initiation at RNA polymerase II promoters in vitro. It is composed of the core TFIIH complex and the TFIIK complex.
|
8 | Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q13888 (/IDA) Q9VNP8 (/IDA) |
Transcription factor TFIIH core complex GO:0000439
The 7 subunit core of TFIIH that is a part of either the general transcription factor holo-TFIIH or the nucleotide-excision repair factor 3 complex. In S. cerevisiae/humans the complex is composed of: Ssl2/XPB, Tfb1/p62, Tfb2/p52, Ssl1/p44, Tfb4/p34, Tfb5/p8 and Rad3/XPD.
|
7 | Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q13888 (/IDA) |
Nucleotide-excision repair factor 3 complex GO:0000112
One of several protein complexes involved in nucleotide-excision repair; possesses endodeoxynuclease and DNA helicase activities. In S. cerevisiae, it is composed of Rad2p and the core TFIIH-Ssl2p complex (core TFIIH is composed of Rad3p, Tfb1p, Tfb2p, Ssl1p, Tfb4p and Tfb5p. Note that Ssl2p is also called Rad25p).
|
6 | Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) Q04673 (/IDA) |
Transcription factor TFIIH holo complex GO:0005675
A complex that is capable of kinase activity directed towards the C-terminal Domain (CTD) of the largest subunit of RNA polymerase II and is essential for initiation at RNA polymerase II promoters in vitro. It is composed of the core TFIIH complex and the TFIIK complex.
|
6 | A0JN27 (/ISS) Q2TBV5 (/ISS) Q2TBV5 (/ISS) Q86KZ2 (/ISS) Q9JIB4 (/ISS) Q9VNP8 (/ISS) |
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
|
5 | A0JN27 (/ISS) Q2TBV5 (/ISS) Q2TBV5 (/ISS) Q9JIB4 (/ISS) Q9VNP8 (/ISS) |
Core TFIIH complex portion of holo TFIIH complex GO:0000438
The core TFIIH complex when it is part of the general transcription factor TFIIH.
|
4 | A0JN27 (/ISS) Q2TBV5 (/ISS) Q2TBV5 (/ISS) Q9JIB4 (/ISS) |
Transcription factor TFIIH core complex GO:0000439
The 7 subunit core of TFIIH that is a part of either the general transcription factor holo-TFIIH or the nucleotide-excision repair factor 3 complex. In S. cerevisiae/humans the complex is composed of: Ssl2/XPB, Tfb1/p62, Tfb2/p52, Ssl1/p44, Tfb4/p34, Tfb5/p8 and Rad3/XPD.
|
2 | O74995 (/ISO) Q9JIB4 (/ISO) |
Transcription factor TFIIH holo complex GO:0005675
A complex that is capable of kinase activity directed towards the C-terminal Domain (CTD) of the largest subunit of RNA polymerase II and is essential for initiation at RNA polymerase II promoters in vitro. It is composed of the core TFIIH complex and the TFIIK complex.
|
2 | Q9ZVN9 (/IGI) Q9ZVN9 (/IGI) |
Nuclear speck GO:0016607
A discrete extra-nucleolar subnuclear domain, 20-50 in number, in which splicing factors are seen to be localized by immunofluorescence microscopy.
|
2 | Q13888 (/IDA) Q6P1K8 (/IDA) |
Core TFIIH complex portion of holo TFIIH complex GO:0000438
The core TFIIH complex when it is part of the general transcription factor TFIIH.
|
1 | Q13888 (/IDA) |
Core TFIIH complex portion of holo TFIIH complex GO:0000438
The core TFIIH complex when it is part of the general transcription factor TFIIH.
|
1 | Q9JIB4 (/ISO) |
Transcription factor TFIIH core complex GO:0000439
The 7 subunit core of TFIIH that is a part of either the general transcription factor holo-TFIIH or the nucleotide-excision repair factor 3 complex. In S. cerevisiae/humans the complex is composed of: Ssl2/XPB, Tfb1/p62, Tfb2/p52, Ssl1/p44, Tfb4/p34, Tfb5/p8 and Rad3/XPD.
|
1 | Q9VNP8 (/ISS) |
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
|
1 | O74995 (/HDA) |
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
|
1 | Q13888 (/IDA) |
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
|
1 | Q9JIB4 (/ISO) |
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
|
1 | Q13888 (/TAS) |
Transcription factor TFIID complex GO:0005669
A complex composed of TATA binding protein (TBP) and TBP associated factors (TAFs); the total mass is typically about 800 kDa. Most of the TAFs are conserved across species. In TATA-containing promoters for RNA polymerase II (Pol II), TFIID is believed to recognize at least two distinct elements, the TATA element and a downstream promoter element. TFIID is also involved in recognition of TATA-less Pol II promoters. Binding of TFIID to DNA is necessary but not sufficient for transcription initiation from most RNA polymerase II promoters.
|
1 | Q13888 (/IDA) |
Transcription factor TFIID complex GO:0005669
A complex composed of TATA binding protein (TBP) and TBP associated factors (TAFs); the total mass is typically about 800 kDa. Most of the TAFs are conserved across species. In TATA-containing promoters for RNA polymerase II (Pol II), TFIID is believed to recognize at least two distinct elements, the TATA element and a downstream promoter element. TFIID is also involved in recognition of TATA-less Pol II promoters. Binding of TFIID to DNA is necessary but not sufficient for transcription initiation from most RNA polymerase II promoters.
|
1 | Q9JIB4 (/ISO) |
Transcription factor TFIIH holo complex GO:0005675
A complex that is capable of kinase activity directed towards the C-terminal Domain (CTD) of the largest subunit of RNA polymerase II and is essential for initiation at RNA polymerase II promoters in vitro. It is composed of the core TFIIH complex and the TFIIK complex.
|
1 | Q9JIB4 (/ISO) |
Transcription factor TFIIH holo complex GO:0005675
A complex that is capable of kinase activity directed towards the C-terminal Domain (CTD) of the largest subunit of RNA polymerase II and is essential for initiation at RNA polymerase II promoters in vitro. It is composed of the core TFIIH complex and the TFIIK complex.
|
1 | O74995 (/TAS) |
Cytosol GO:0005829
The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes.
|
1 | O74995 (/HDA) |
Nuclear speck GO:0016607
A discrete extra-nucleolar subnuclear domain, 20-50 in number, in which splicing factors are seen to be localized by immunofluorescence microscopy.
|
1 | Q9JIB4 (/ISO) |