The name of this superfamily has been modified since the most recent official CATH+ release (v4_4_0). At the point of the last release, this superfamily was named:

"
DNA polymerase family B, C-terminal domain
".

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 3: DNA polymerase epsilon catalytic subunit

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 16 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
4 P21951 (/IDA) P87154 (/IDA) Q9GV40 (/IDA) Q9VCN1 (/IDA)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
4 D3Z8X4 (/IMP) P21951 (/IMP) P87154 (/IMP) Q07864 (/IMP)
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
4 F4HW04 (/IPI) P21951 (/IPI) P87154 (/IPI) Q07864 (/IPI)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
2 Q9GV40 (/NAS) Q9VCN1 (/NAS)
3'-5'-exodeoxyribonuclease activity GO:0008296
Catalysis of the sequential cleavage of mononucleotides from a free 3' terminus of a DNA molecule.
2 Q9GV40 (/IDA) Q9VCN1 (/IDA)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 Q07864 (/IDA)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 Q9WVF7 (/ISO)
DNA binding GO:0003677
Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid).
1 Q07864 (/TAS)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
1 Q07864 (/IDA)
Chromatin binding GO:0003682
Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase.
1 Q9WVF7 (/ISO)
Double-stranded DNA binding GO:0003690
Interacting selectively and non-covalently with double-stranded DNA.
1 P21951 (/IDA)
Single-stranded DNA binding GO:0003697
Interacting selectively and non-covalently with single-stranded DNA.
1 P21951 (/IDA)
MRNA binding GO:0003729
Interacting selectively and non-covalently with messenger RNA (mRNA), an intermediate molecule between DNA and protein. mRNA includes UTR and coding sequences, but does not contain introns.
1 P21951 (/HDA)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 Q9WVF7 (/ISO)
DNA-directed DNA polymerase activity GO:0003887
Catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1); the synthesis of DNA from deoxyribonucleotide triphosphates in the presence of a DNA template and a 3'hydroxyl group.
1 Q54RD4 (/ISS)
Single-stranded DNA 3'-5' exodeoxyribonuclease activity GO:0008310
Catalysis of the sequential cleavage of mononucleotides from a free 3' terminus of a single-stranded DNA molecule.
1 P21951 (/IMP)

There are 50 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
DNA-dependent DNA replication GO:0006261
A DNA replication process that uses parental DNA as a template for the DNA-dependent DNA polymerases that synthesize the new strands.
3 P21951 (/IDA) Q9GV40 (/IDA) Q9VCN1 (/IDA)
Mitotic cell cycle GO:0000278
Progression through the phases of the mitotic cell cycle, the most common eukaryotic cell cycle, which canonically comprises four successive phases called G1, S, G2, and M and includes replication of the genome and the subsequent segregation of chromosomes into daughter cells. In some variant cell cycles nuclear replication or nuclear division may not be followed by cell division, or G1 and G2 phases may be absent.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
Nucleotide-excision repair, DNA gap filling GO:0006297
Repair of the gap in the DNA helix by DNA polymerase and DNA ligase after the portion of the strand containing the lesion has been removed by pyrimidine-dimer repair enzymes.
2 P21951 (/IMP) Q07864 (/IMP)
Endomitotic cell cycle GO:0007113
A mitotic cell cycle in which chromosomes are replicated and sister chromatids separate, but spindle formation, nuclear membrane breakdown and nuclear division do not occur, resulting in an increased number of chromosomes in the cell.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
Organ growth GO:0035265
The increase in size or mass of an organ. Organs are commonly observed as visibly distinct structures, but may also exist as loosely associated clusters of cells that function together as to perform a specific function.
2 Q9GV40 (/IMP) Q9VCN1 (/IMP)
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 Q07864 (/IMP)
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 Q9WVF7 (/ISO)
G1/S transition of mitotic cell cycle GO:0000082
The mitotic cell cycle transition by which a cell in G1 commits to S phase. The process begins with the build up of G1 cyclin-dependent kinase (G1 CDK), resulting in the activation of transcription of G1 cyclins. The process ends with the positive feedback of the G1 cyclins on the G1 CDK which commits the cell to S phase, in which DNA replication is initiated.
1 Q07864 (/TAS)
DNA synthesis involved in DNA repair GO:0000731
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end and uses the homologous intact duplex as the template.
1 Q07864 (/IMP)
DNA synthesis involved in DNA repair GO:0000731
Synthesis of DNA that proceeds from the broken 3' single-strand DNA end and uses the homologous intact duplex as the template.
1 Q9WVF7 (/ISO)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q07864 (/IMP)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q9WVF7 (/ISO)
DNA replication GO:0006260
The cellular metabolic process in which a cell duplicates one or more molecules of DNA. DNA replication begins when specific sequences, known as origins of replication, are recognized and bound by initiation proteins, and ends when the original DNA molecule has been completely duplicated and the copies topologically separated. The unit of replication usually corresponds to the genome of the cell, an organelle, or a virus. The template for replication can either be an existing DNA molecule or RNA.
1 Q07864 (/TAS)
DNA replication initiation GO:0006270
The process in which DNA-dependent DNA replication is started; this begins with the ATP dependent loading of an initiator complex onto the DNA, this is followed by DNA melting and helicase activity. In bacteria, the gene products that enable the helicase activity are loaded after the initial melting and in archaea and eukaryotes, the gene products that enable the helicase activity are inactive when they are loaded and subsequently activate.
1 Q07864 (/TAS)
Leading strand elongation GO:0006272
The process in which an existing DNA strand is extended continuously in a 5' to 3' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Leading strand elongation proceeds in the same direction as the replication fork.
1 P21951 (/IMP)
Leading strand elongation GO:0006272
The process in which an existing DNA strand is extended continuously in a 5' to 3' direction by activities including the addition of nucleotides to the 3' end of the strand, complementary to an existing template, as part of DNA replication. Leading strand elongation proceeds in the same direction as the replication fork.
1 Q54RD4 (/ISS)
Premeiotic DNA replication GO:0006279
The replication of DNA that precedes meiotic cell division.
1 P87154 (/IMP)
Base-excision repair GO:0006284
In base excision repair, an altered base is removed by a DNA glycosylase enzyme, followed by excision of the resulting sugar phosphate. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase.
1 P21951 (/IMP)
Base-excision repair, gap-filling GO:0006287
Repair of the damaged strand by the combined action of an apurinic endouclease that degrades a few bases on the damaged strand and a polymerase that synthesizes a 'patch' in the 5' to 3' direction, using the undamaged strand as a template.
1 Q07864 (/IDA)
Base-excision repair, gap-filling GO:0006287
Repair of the damaged strand by the combined action of an apurinic endouclease that degrades a few bases on the damaged strand and a polymerase that synthesizes a 'patch' in the 5' to 3' direction, using the undamaged strand as a template.
1 Q9WVF7 (/ISO)
Nucleotide-excision repair GO:0006289
A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts).
1 Q54RD4 (/ISS)
Nucleotide-excision repair, DNA gap filling GO:0006297
Repair of the gap in the DNA helix by DNA polymerase and DNA ligase after the portion of the strand containing the lesion has been removed by pyrimidine-dimer repair enzymes.
1 Q9WVF7 (/ISO)
Double-strand break repair GO:0006302
The repair of double-strand breaks in DNA via homologous and nonhomologous mechanisms to reform a continuous DNA helix.
1 P21951 (/IMP)
Double-strand break repair via nonhomologous end joining GO:0006303
The repair of a double-strand break in DNA in which the two broken ends are rejoined with little or no sequence complementarity. Information at the DNA ends may be lost due to the modification of broken DNA ends. This term covers instances of separate pathways, called classical (or canonical) and alternative nonhomologous end joining (C-NHEJ and A-NHEJ). These in turn may further branch into sub-pathways, but evidence is still unclear.
1 P21951 (/IGI)
Double-strand break repair via nonhomologous end joining GO:0006303
The repair of a double-strand break in DNA in which the two broken ends are rejoined with little or no sequence complementarity. Information at the DNA ends may be lost due to the modification of broken DNA ends. This term covers instances of separate pathways, called classical (or canonical) and alternative nonhomologous end joining (C-NHEJ and A-NHEJ). These in turn may further branch into sub-pathways, but evidence is still unclear.
1 P21951 (/IMP)
Chromatin organization GO:0006325
Any process that results in the specification, formation or maintenance of the physical structure of eukaryotic chromatin.
1 P87154 (/IMP)
Mitotic sister chromatid cohesion GO:0007064
The cell cycle process in which the sister chromatids of a replicated chromosome are joined along the entire length of the chromosome, from their formation in S phase through metaphase during a mitotic cell cycle. This cohesion cycle is critical for high fidelity chromosome transmission.
1 P21951 (/IMP)
Embryonic root morphogenesis GO:0010086
The process in which the anatomical structures of the embryonic root are generated and organized.
1 F4HW04 (/IMP)
Regulation of chromatin silencing by small RNA GO:0010964
Any process that modulates the frequency, rate or extent of chromatin silencing by small RNA. Chromatin silencing by small RNA is the repression of transcription by conversion of large regions of DNA into heterochromatin, directed by small RNAs sharing sequence identity to the repressed region.
1 P87154 (/IMP)
Intra-S DNA damage checkpoint GO:0031573
A mitotic cell cycle checkpoint that slows DNA synthesis in response to DNA damage by the prevention of new origin firing and the stabilization of slow replication fork progression.
1 P21951 (/IGI)
Intra-S DNA damage checkpoint GO:0031573
A mitotic cell cycle checkpoint that slows DNA synthesis in response to DNA damage by the prevention of new origin firing and the stabilization of slow replication fork progression.
1 P21951 (/IMP)
Intra-S DNA damage checkpoint GO:0031573
A mitotic cell cycle checkpoint that slows DNA synthesis in response to DNA damage by the prevention of new origin firing and the stabilization of slow replication fork progression.
1 P21951 (/IPI)
Telomere maintenance via semi-conservative replication GO:0032201
The process in which telomeric DNA is synthesized semi-conservatively by the conventional replication machinery and telomeric accessory factors as part of cell cycle DNA replication.
1 Q07864 (/TAS)
Mitotic DNA replication checkpoint GO:0033314
A cell cycle checkpoint that acts during a mitotic cell cycle and prevents the initiation of mitosis until DNA replication is complete, thereby ensuring that progeny inherit a full complement of the genome.
1 P21951 (/IMP)
Gene conversion GO:0035822
A DNA recombination process that results in the unidirectional transfer of genetic material from a donor sequence to a highly homologous acceptor.
1 P21951 (/IMP)
Error-prone translesion synthesis GO:0042276
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication by using a specialized DNA polymerase or replication complex to insert a defined nucleotide across the lesion. This process does not remove the replication-blocking lesions and causes an increase in the endogenous mutation level. For example, in E. coli, a low fidelity DNA polymerase, pol V, copies lesions that block replication fork progress. This produces mutations specifically targeted to DNA template damage sites, but it can also produce mutations at undamaged sites.
1 P21951 (/IDA)
DNA replication proofreading GO:0045004
Correction of replication errors by DNA polymerase using a 3'-5' exonuclease activity.
1 P21951 (/IMP)
Embryonic organ development GO:0048568
Development, taking place during the embryonic phase, of a tissue or tissues that work together to perform a specific function or functions. Development pertains to the process whose specific outcome is the progression of a structure over time, from its formation to the mature structure. Organs are commonly observed as visibly distinct structures, but may also exist as loosely associated clusters of cells that work together to perform a specific function or functions.
1 D3Z8X4 (/IEP)
Negative regulation of long-day photoperiodism, flowering GO:0048579
Any process that stops, prevents or reduces long-day photoperiodism, where the response associated with the photoperiodism is flowering. Flowering is defined by the switch from the vegetative to the reproductive phase.
1 F4HW04 (/IMP)
Regulation of cell division GO:0051302
Any process that modulates the frequency, rate or extent of the physical partitioning and separation of a cell into daughter cells.
1 F4HW04 (/IMP)
Heterochromatin organization involved in chromatin silencing GO:0070868
Any process that results in the specification, formation or maintenance of the physical structure of eukaryotic heterochromatin and contributes to chromatin silencing.
1 P21951 (/IGI)
Heterochromatin organization involved in chromatin silencing GO:0070868
Any process that results in the specification, formation or maintenance of the physical structure of eukaryotic heterochromatin and contributes to chromatin silencing.
1 P21951 (/IMP)
DNA biosynthetic process GO:0071897
The cellular DNA metabolic process resulting in the formation of DNA, deoxyribonucleic acid, one of the two main types of nucleic acid, consisting of a long unbranched macromolecule formed from one or two strands of linked deoxyribonucleotides, the 3'-phosphate group of each constituent deoxyribonucleotide being joined in 3',5'-phosphodiester linkage to the 5'-hydroxyl group of the deoxyribose moiety of the next one.
1 D3Z8X4 (/IMP)
DNA biosynthetic process GO:0071897
The cellular DNA metabolic process resulting in the formation of DNA, deoxyribonucleic acid, one of the two main types of nucleic acid, consisting of a long unbranched macromolecule formed from one or two strands of linked deoxyribonucleotides, the 3'-phosphate group of each constituent deoxyribonucleotide being joined in 3',5'-phosphodiester linkage to the 5'-hydroxyl group of the deoxyribose moiety of the next one.
1 Q9WVF7 (/ISO)
Positive regulation of chromatin silencing at centromere GO:0090053
Any process that increases the frequency, rate or extent of chromatin silencing at the centromere. Chromatin silencing at the centromere is the repression of transcription of centromeric DNA by altering the structure of chromatin.
1 P87154 (/IMP)
Mitotic DNA replication initiation GO:1902975
Any DNA replication initiation involved in mitotic cell cycle DNA replication.
1 P87154 (/IMP)
DNA strand elongation involved in mitotic DNA replication GO:1902983
Any DNA strand elongation involved in mitotic cell cycle DNA replication.
1 P87154 (/IMP)
Regulation of CENP-A containing nucleosome assembly GO:1903097
Any process that modulates the rate, frequency or extent of the formation of nucleosomes containing the histone H3 variant CENP-A to form centromeric chromatin. This specialised chromatin occurs at centromeric region in point centromeres, and the central core in modular centromeres.
1 P87154 (/IMP)
Mitotic DNA replication leading strand elongation GO:1903460
Any leading strand elongation that is involved in mitotic cell cycle DNA replication.
1 P87154 (/IMP)

There are 16 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
5 F5H1D6 (/IDA) Q07864 (/IDA) Q38DX2 (/IDA) Q9GV40 (/IDA) Q9VCN1 (/IDA)
Epsilon DNA polymerase complex GO:0008622
A heterotetrameric DNA polymerase complex that catalyzes processive DNA synthesis in the absence of PCNA, but is further stimulated in the presence of PCNA. The complex contains a large catalytic subunit and three small subunits, and is best characterized in Saccharomyces, in which the subunits are named Pol2p, Dpb2p, Dpb3p, and Dpb4p. Some evidence suggests that DNA polymerase epsilon is the leading strand polymerase; it is also involved in nucleotide-excision repair and mismatch repair.
4 Q54RD4 (/ISS) Q9GV40 (/ISS) Q9VCN1 (/ISS) Q9WVF7 (/ISS)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
3 F5H1D6 (/IDA) Q07864 (/IDA) Q38DX2 (/IDA)
Epsilon DNA polymerase complex GO:0008622
A heterotetrameric DNA polymerase complex that catalyzes processive DNA synthesis in the absence of PCNA, but is further stimulated in the presence of PCNA. The complex contains a large catalytic subunit and three small subunits, and is best characterized in Saccharomyces, in which the subunits are named Pol2p, Dpb2p, Dpb3p, and Dpb4p. Some evidence suggests that DNA polymerase epsilon is the leading strand polymerase; it is also involved in nucleotide-excision repair and mismatch repair.
3 F4HW04 (/IDA) P21951 (/IDA) Q07864 (/IDA)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
2 E9AFR3 (/ISO) Q9WVF7 (/ISO)
Plasma membrane GO:0005886
The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins.
2 F5H1D6 (/IDA) Q07864 (/IDA)
Epsilon DNA polymerase complex GO:0008622
A heterotetrameric DNA polymerase complex that catalyzes processive DNA synthesis in the absence of PCNA, but is further stimulated in the presence of PCNA. The complex contains a large catalytic subunit and three small subunits, and is best characterized in Saccharomyces, in which the subunits are named Pol2p, Dpb2p, Dpb3p, and Dpb4p. Some evidence suggests that DNA polymerase epsilon is the leading strand polymerase; it is also involved in nucleotide-excision repair and mismatch repair.
2 P87154 (/ISO) Q9WVF7 (/ISO)
Nuclear chromosome, telomeric region GO:0000784
The terminal region of a linear nuclear chromosome that includes the telomeric DNA repeats and associated proteins.
1 P87154 (/IDA)
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
1 Q9WVF7 (/ISO)
Nucleoplasm GO:0005654
That part of the nuclear content other than the chromosomes or the nucleolus.
1 Q07864 (/TAS)
Replication fork GO:0005657
The Y-shaped region of a replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
1 P21951 (/IDA)
Replication fork GO:0005657
The Y-shaped region of a replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
1 Q54RD4 (/ISS)
Plasma membrane GO:0005886
The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins.
1 Q9WVF7 (/ISO)
Epsilon DNA polymerase complex GO:0008622
A heterotetrameric DNA polymerase complex that catalyzes processive DNA synthesis in the absence of PCNA, but is further stimulated in the presence of PCNA. The complex contains a large catalytic subunit and three small subunits, and is best characterized in Saccharomyces, in which the subunits are named Pol2p, Dpb2p, Dpb3p, and Dpb4p. Some evidence suggests that DNA polymerase epsilon is the leading strand polymerase; it is also involved in nucleotide-excision repair and mismatch repair.
1 F4HW04 (/IPI)
Nuclear replication fork GO:0043596
The Y-shaped region of a nuclear replicating DNA molecule, resulting from the separation of the DNA strands and in which the synthesis of new strands takes place. Also includes associated protein complexes.
1 P87154 (/IC)
Apoplast GO:0048046
The cell membranes and intracellular regions in a plant are connected through plasmodesmata, and plants may be described as having two major compartments: the living symplast and the non-living apoplast. The apoplast is external to the plasma membrane and includes cell walls, intercellular spaces and the lumen of dead structures such as xylem vessels. Water and solutes pass freely through it.
1 F4HW04 (/IDA)
CATH-Gene3D is a Global Biodata Core Resource Learn more...