CATH Superfamily 1.10.10.10
Winged helix-like DNA-binding domain superfamily/Winged helix DNA-binding domain
The name of this superfamily has been modified since the most recent official CATH+ release (v4_4_0). At the point of the last release, this superfamily was named:
"Winged helix-like DNA-binding domain superfamily/Winged helix DNA-binding domain
".
FunFam 852: Nse1p
Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.
There are 1 GO terms relating to "molecular function"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
Protein binding GO:0005515
Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules).
|
4 | Q07913 (/IPI) Q07913 (/IPI) Q07913 (/IPI) Q07913 (/IPI) |
There are 3 GO terms relating to "biological process"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
|
4 | Q07913 (/IDA) Q07913 (/IDA) Q07913 (/IDA) Q07913 (/IDA) |
DNA repair GO:0006281
The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway.
|
4 | Q07913 (/IMP) Q07913 (/IMP) Q07913 (/IMP) Q07913 (/IMP) |
Postreplication repair GO:0006301
The conversion of DNA-damage induced single-stranded gaps into large molecular weight DNA after replication. Includes pathways that remove replication-blocking lesions in conjunction with DNA replication.
|
4 | Q07913 (/IGI) Q07913 (/IGI) Q07913 (/IGI) Q07913 (/IGI) |
There are 2 GO terms relating to "cellular component"
The search results have been sorted with the annotations that are found most frequently at the top of the
list. The results can be filtered by typing text into the search box at the top of the table.
GO Term | Annotations | Evidence |
---|---|---|
Nucleus GO:0005634
A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent.
|
4 | Q07913 (/IDA) Q07913 (/IDA) Q07913 (/IDA) Q07913 (/IDA) |
Smc5-Smc6 complex GO:0030915
A conserved complex that contains a heterodimer of SMC proteins (Smc5p and Smc6p, or homologs thereof) and several other proteins, and is involved in DNA repair and maintaining cell cycle arrest following DNA damage. In S. cerevisiae, this is an octameric complex called Mms21-Smc5-Smc6 complex, with at least five of its subunits conserved in fission yeast and humans.
|
4 | Q07913 (/IDA) Q07913 (/IDA) Q07913 (/IDA) Q07913 (/IDA) |