The name of this superfamily has been modified since the most recent official CATH+ release (v4_3_0). At the point of the last release, this superfamily was: waiting to be named.

Functional Families

Overview of the Structural Clusters (SC) and Functional Families within this CATH Superfamily. Clusters with a representative structure are represented by a filled circle.
« Back to all FunFams

FunFam 38: AT13908p

Please note: GO annotations are assigned to the full protein sequence rather than individual protein domains. Since a given protein can contain multiple domains, it is possible that some of the annotations below come from additional domains that occur in the same protein, but have been classified elsewhere in CATH.

There are 1 GO terms relating to "molecular function"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
ATP-dependent microtubule motor activity, minus-end-directed GO:0008569
Catalysis of movement along a microtubule toward the minus end, coupled to the hydrolysis of ATP.
1 Q86NT8 (/ISS)

There are 2 GO terms relating to "biological process"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Cilium movement GO:0003341
The directed, self-propelled movement of a cilium.
1 Q86NT8 (/ISS)
Retrograde axonal transport GO:0008090
The directed movement of organelles or molecules along microtubules from the cell periphery toward the cell body in nerve cell axons.
1 Q86NT8 (/IMP)

There are 1 GO terms relating to "cellular component"

The search results have been sorted with the annotations that are found most frequently at the top of the list. The results can be filtered by typing text into the search box at the top of the table.
GO Term Annotations Evidence
Inner dynein arm GO:0036156
Inner arm structure present on the outer doublet microtubules of ciliary and flagellar axonemes. The structure of inner dynein arms is complex and may vary within the axoneme. Inner dynein arms are heteromeric, comprising 8 different heavy chains and various subunits. Inner and outer dynein arms have different functions in the generation of microtubule-based motility.
1 Q86NT8 (/ISS)