CATH Classification

Domain Context

CATH Clusters

Superfamily Aspartate Aminotransferase, domain 1
Functional Family Cysteine desulfurase CsdA

Enzyme Information

4.4.1.-
Carbon-sulfur lyases.
based on mapping to UniProt Q46925
4.4.1.16
Selenocysteine lyase.
based on mapping to UniProt Q46925
L-selenocysteine + reduced acceptor = selenide + L-alanine + acceptor.
-!- Dithiothreitol or 2-mercaptoethanol can act as the reducing agent in the reaction. -!- The enzyme from animals does not act on cysteine, serine or chloroalanine, while the enzyme from bacteria shows activity with cysteine (cf. EC 2.8.1.7).
2.8.1.7
Cysteine desulfurase.
based on mapping to UniProt Q46925
L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor.
-!- The sulfur from free L-cysteine is first transferred to a cysteine residue in the active site, and then passed on to various other acceptors. -!- The enzyme is involved in the biosynthesis of iron-sulfur clusters, thio-nucleosides in tRNA, thiamine, biotin, lipoate and pyranopterin (molybdopterin). -!- In Azotobacter vinelandii, this sulfur provides the inorganic sulfide required for nitrogenous metallocluster formation.

UniProtKB Entries (1)

Q46925
CSDA_ECOLI
Escherichia coli K-12
Cysteine desulfurase CsdA

PDB Structure

PDB 4LW2
External Links
Method X-RAY DIFFRACTION
Organism
Primary Citation
Structural changes during cysteine desulfurase CsdA and sulfur-acceptor CsdE interactions provide insight into the trans-persulfuration.
Kim, S., Park, S.Y.
J.Biol.Chem.
CATH-Gene3D is a Global Biodata Core Resource Learn more...